RESUMEN
Objective: An accurate identification of patients at the need for prioritized diagnostics and care are crucial in the emergency department (ED). Blood gas (BG) analysis is a widely available laboratory test, which allows to measure vital parameters, including markers of ventilation and perfusion. The aim of our analysis was to assess whether blood gas parameters in patients with dyspnea at an increased risk of respiratory failure admitted to the ED can predict short-term outcomes. Methods: The study group eventually consisted of 108 patients, with available BG analysis. The clinical and laboratory parameters were retrospectively evaluated, and three groups were distinguished-arterial blood gas (ABG), venous blood gas (VBG), and mixed blood gas. The primary endpoint was short-term, all-cause mortality during the follow-up of median (quartile 1-quartile 3) 2 (1-4) months. The independent risk factors for mortality that could be obtained from blood gas sampling were evaluated. Results: The short-term mortality was 35.2% (38/108). Patients who died were more frequently initially assigned to the red triage risk group, more burdened with comorbidities, and the median SpO2 on admission was significantly lower than in patients who survived the follow-up period. In the multivariable analysis, lactate was the strongest independent predictor of death, with 1 mmol/L increasing all-cause mortality by 58% in ABG (95% CI: 1.01-2.47), by 80% in VBG (95% CI: 1.13-2.88), and by 68% in the mixed blood gas analysis (95% CI: 1.22-2.31), what remained significant in VBG and mixed group after correction for base excess. In each group, pH, pO2, and pCO2 did not predict short-term mortality. Conclusions: In patients admitted to the ED due to dyspnea, at risk of respiratory failure, lactate levels in arterial, venous, and mixed blood samples are independent predictors of short-term mortality.
RESUMEN
Mallampati score has been identified and accepted worldwide as an independent predictor of difficult intubation and obstructive sleep apnea. We aimed to determine whether Mallampati score assessed on the first patient medical assessment allowed us to stratify the risk of worsening of conditions in patients hospitalized due to COVID-19. A total of 493 consecutive patients admitted between 13 November 2021 and 2 January 2022 to the temporary hospital in Pyrzowice were included in the analysis. The clinical data, chest CT scan, and major, clinically relevant laboratory parameters were assessed by patient-treating physicians, whereas the Mallampati score was assessed on admission by investigators blinded to further treatment. The primary endpoints were necessity of active oxygen therapy (AOT) during hospitalization and 60-day all-cause mortality. Of 493 patients included in the analysis, 69 (14.0%) were in Mallampati I, 57 (11.6%) were in Mallampati II, 78 (15.8%) were in Mallampati III, and 288 (58.9%) were in Mallampati IV. There were no differences in the baseline characteristics between the groups, except the prevalence of chronic kidney disease (p = 0.046). Patients with Mallampati IV were at the highest risk of AOT during the hospitalization (33.0%) and the highest risk of death due to any cause at 60 days (35.0%), which significantly differed from other scores (p = 0.005 and p = 0.03, respectively). Mallampati IV was identified as an independent predictor of need for AOT (OR 3.089, 95% confidence interval 1.65−5.77, p < 0.001) but not of all-cause mortality at 60 days. In conclusion, Mallampati IV was identified as an independent predictor of AOT during hospitalization. Mallampati score can serve as a prehospital tool allowing to identify patients at higher need for AOT.