Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(2-2): 025205, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723798

RESUMEN

Recent validation experiments on laser irradiation of polymer foils with and without implanted golden nanoparticles are discussed. First we analyze characteristics of craters, formed in the target after its interaction with the laser beam. Preliminary experimental results show significant production of deuterons when both the energy of laser pulse and concentration of nanoparticles are high enough. We consider the deuteron production via the nuclear transmutation reactions p+C→d+X where protons are accelerated by the Coulomb field generated in the target plasma. We argue that maximal proton energy can be above threshold values for these reactions and the deuteron yield may noticeably increase due to presence of nanoparticles.

2.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36362358

RESUMEN

In this work, the effects of femtosecond laser irradiation and doping with plasmonic gold nanorods on the degree of conversion (DC) of a urethane dimethacrylate (UDMA)-triethylene glycol dimethacrylate (TEGDMA) nanocomposite were investigated. The UDMA-TEGDMA photopolymer was prepared in a 3:1 weight ratio and doped with dodecanethiol- (DDT) capped gold nanorods of 25 × 75 or 25 × 85 nm nominal diameter and length. It was found that the presence of the gold nanorods alone (without direct plasmonic excitation) can increase the DC of the photopolymer by 6-15%. This increase was found to be similar to what could be achieved with a control heat treatment of 30 min at 180 °C. It was also shown that femtosecond laser impulses (795 nm, 5 mJ pulse energy, 50 fs pulse length, 2.83 Jcm-2 fluence), applied after the photopolymerization under a standard dental curing lamp, can cause a 2-7% increase in the DC of undoped samples, even after thermal pre-treatment. The best DC values (12-15% increase) were obtained with combined nanorod doping and subsequent laser irradiation close to the plasmon resonance peak of the nanorods (760-800 nm), which proves that the excited plasmon field can directly facilitate double bond breakage (without thermoplasmonic effects due to the short pulse length) and increase the crosslink density independently from the initial photopolymerization process.


Asunto(s)
Nanocompuestos , Nanotubos , Oro , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...