Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6085, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480808

RESUMEN

Axonal terminals of the small ventral lateral neurons (sLNvs), the circadian clock neurons of Drosophila, show daily changes in their arborization complexity, with many branches in the morning and their shrinkage during the night. This complex phenomenon is precisely regulated by several mechanisms. In the present study we describe that one of them is autophagy, a self-degradative process, also involved in changes of cell membrane size and shape. Our results showed that autophagosome formation and processing in PDF-expressing neurons (both sLNv and lLNv) are rhythmic and they have different patterns in the cell bodies and terminals. These rhythmic changes in the autophagy activity seem to be important for neuronal plasticity. We found that autophagosome cargos are different during the day and night, and more proteins involved in membrane remodeling are present in autophagosomes in the morning. In addition, we described for the first time that Atg8-positive vesicles are also present outside the sLNv terminals, which suggests that secretory autophagy might be involved in regulating the clock signaling network. Our data indicate that rhythmic autophagy in clock neurons affect the pacemaker function, through remodeling of terminal membrane and secretion of specific proteins from sLNvs.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Animales Modificados Genéticamente/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/fisiología , Drosophila/metabolismo , Neuronas/metabolismo , Autofagia
2.
Front Physiol ; 13: 886273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574462

RESUMEN

Autophagy is a self-degradative process which plays a role in removing misfolded or aggregated proteins, clearing damaged organelles, but also in changes of cell membrane size and shape. The aim of this phenomenon is to deliver cytoplasmic cargo to the lysosome through the intermediary of a double membrane-bound vesicle (autophagosome), that fuses with a lysosome to form autolysosome, where cargo is degraded by proteases. Products of degradation are transported back to the cytoplasm, where they can be re-used. In the present study we showed that autophagy is important for proper functioning of the glia and that it is involved in the regulation of circadian structural changes in processes of the pacemaker neurons. This effect is mainly observed in astrocyte-like glia, which play a role of peripheral circadian oscillators in the Drosophila brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...