Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(14)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157558

RESUMEN

TbxPr1-xAl2are ferrimagnetic materials exhibiting magnetocaloric effect that have gained considerable attention due to their potential use as an alternative in refrigeration, magnetic sensors and in information storage technology. Here using the mean field approach numerical simulations were conducted forx= 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, to analyze selected physical properties, such as x-ray and neutron powder diffraction, magnetization and heat capacity. The simulations successfully reproduced the experimental data providing a comprehensive characterization and improved understanding of this family of compound.

2.
Nat Commun ; 13(1): 1951, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414051

RESUMEN

Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials.

3.
Materials (Basel) ; 14(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34640201

RESUMEN

The crystal structure of BiMnO3+δ ceramics has been studied as a function of nominal oxygen excess and temperature using synchrotron and neutron powder diffraction, magnetometry and differential scanning calorimetry. Increase in oxygen excess leads to the structural transformations from the monoclinic structure (C2/c) to another monoclinic (P21/c), and then to the orthorhombic (Pnma) structure through the two-phase regions. The sequence of the structural transformations is accompanied by a modification of the orbital ordering followed by its disruption. Modification of the orbital order leads to a rearrangement of the magnetic structure of the compounds from the long-range ferromagnetic to a mixed magnetic state with antiferromagnetic clusters coexistent in a ferromagnetic matrix followed by a frustration of the long-range magnetic order. Temperature increase causes the structural transition to the nonpolar orthorhombic phase regardless of the structural state at room temperature; the orbital order is destroyed in compounds BiMnO3+δ (δ ≤ 0.14) at temperatures above 470 °C.

4.
Angew Chem Int Ed Engl ; 60(21): 11735-11739, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33651917

RESUMEN

Herein we demonstrate mesoporous frameworks interacting with carbon dioxide leading to stimulated structural contractions and massive out-of-equilibrium pressure amplification well beyond ambient pressure. Carbon dioxide, a non-toxic and non-flammable working medium, is promising for the development of pressure-amplifying frameworks for pneumatic technologies and safety systems. The strong interaction of the fluid with the framework even contracts DUT-46, a framework hitherto considered as non-flexible. Synchrotron-based in situ PXRD/adsorption experiments reveal the characteristic contraction pressure for DUT-49 pressure amplification in the range of 350-680 kPa. The stimulated framework contraction expels 1.1 to 2.4 mmol g-1 CO2 leading to autonomous pressure amplification in a pneumatic demonstrator system up to 428 kPa. According to system level estimations even higher theoretical pressure amplification may be achieved between 535 and 1011 kPa.

5.
ACS Appl Mater Interfaces ; 13(11): 13022-13033, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33721995

RESUMEN

Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.

6.
Faraday Discuss ; 225(0): 168-183, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33118556

RESUMEN

Unusual adsorption phenomena, such as breathing and negative gas adsorption (NGA), are rare and challenge our thermodynamic understanding of adsorption in deformable porous solids. In particular, NGA appears to break the rules of thermodynamics in these materials by exhibiting a spontaneous release of gas accompanying an increase in pressure. This anomaly relies on long-lived metastable states. A fundamental understanding of this process is desperately required for the discovery of new materials with this exotic property. Interestingly, NGA was initially observed upon adsorption of methane at relatively low temperature, close to the respective standard boiling point of the adsorptive, and no NGA was observed at elevated temperatures. In this contribution, we present an extensive investigation of adsorption of an array of gases at various temperatures on DUT-49, a material which features an NGA transition. Experiments, featuring a wide range of gases and vapors at temperatures ranging from 21-308 K, were used to identify for each guest a critical temperature range in which NGA can be detected. The experimental results were complemented by molecular simulations that help to rationalize the absence of NGA at elevated temperatures, and the non-monotonic behavior present upon temperature decrease. Furthermore, this in-depth analysis highlights the crucial thermodynamic and kinetic conditions for NGA, which are unique to each guest and potentially other solids with similar effects. We expect this exploration to provide detailed guidelines for experimentally discovering NGA and related "rule breaking" phenomena in novel and already known materials, and provide the conditions required for the application of this effect, for example as pressure amplifying materials.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1027-1035, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289714

RESUMEN

Multiple-Edge Anomalous Diffraction (MEAD) has been applied to various quaternary sulfosalts belonging to the adamantine compound family in order to validate the distribution of copper, zinc and iron cations in the structure. Semiconductors from this group of materials are promising candidates for photovoltaic applications. Their properties strongly depend on point defects, in particular related to cation order-disorder. However, Cu+, Zn2+ and Fe2+ have very similar scattering factors and are all but indistinguishable in usual X-ray diffraction experiments. Anomalous diffraction utilizes the dependency of the atomic scattering factors f' and f'' of the energy of the radiation, especially close to the element-specific absorption edges. In the MEAD technique, individual Bragg peaks are tracked over an absorption edge. The intensity changes depending on the structure factor can be highly characteristic for Miller indices selected for a specific structural problem, but require very exact measurements. Beamline KMC-2 at synchrotron BESSY II, Berlin, has been recently upgraded for this technique. Anomalous X-ray powder diffraction and XAFS compliment the data. Application of this technique confirmed established cation distribution in Cu2ZnSnSe4 (CZTSe) and Cu2FeSnS4 (CFTS). In contrast to the literature, cation distribution in Cu2ZnSiSe4 (CZSiSe) is shown to adopt a highly ordered wurtz-kesterite structure type.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 2): 267-274, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831229

RESUMEN

This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr3) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr3. The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present.

9.
Chem Sci ; 11(35): 9468-9479, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34094213

RESUMEN

Framework materials at the molecular level, such as metal-organic frameworks (MOF), were recently found to exhibit exotic and counterintuitive micromechanical properties. Stimulated by host-guest interactions, these so-called soft porous crystals can display counterintuitive adsorption phenomena such as negative gas adsorption (NGA). NGA materials are bistable frameworks where the occurrence of a metastable overloaded state leads to pressure amplification upon a sudden framework contraction. How can we control activation barriers and energetics via functionalization of the molecular building blocks that dictate the frameworks' mechanical response? In this work we tune the elastic and inelastic properties of building blocks at the molecular level and analyze the mechanical response of the resulting frameworks. From a set of 11 frameworks, we demonstrate that widening of the backbone increases stiffness, while elongation of the building blocks results in a decrease in critical yield stress of buckling. We further functionalize the backbone by incorporation of sp3 hybridized carbon atoms to soften the molecular building blocks, or stiffen them with sp2 and sp carbons. Computational modeling shows how these modifications of the building blocks tune the activation barriers within the energy landscape of the guest-free bistable frameworks. Only frameworks with free energy barriers in the range of 800 to 1100 kJ mol-1 per unit cell, and moderate yield stress of 0.6 to 1.2 nN for single ligand buckling, exhibit adsorption-induced contraction and negative gas adsorption. Advanced experimental in situ methodologies give detailed insights into the structural transitions and the adsorption behavior. The new framework DUT-160 shows the highest magnitude of NGA ever observed for nitrogen adsorption at 77 K. Our computational and experimental analysis of the energetics and mechanical response functions of porous frameworks is an important step towards tuning activation barriers in dynamic framework materials and provides critical design principles for molecular building blocks leading to pressure amplifying materials.

10.
Nat Commun ; 10(1): 3632, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406113

RESUMEN

Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD4) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions.

11.
RSC Adv ; 9(20): 11151-11159, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520259

RESUMEN

By using synchrotron X-ray powder diffraction, the temperature dependent phase diagram of the hybrid perovskite tri-halide compounds, methyl ammonium lead iodide (MAPbI3, MA+ = CH3NH3 +) and methyl ammonium lead bromide (MAPbBr3), as well as of their solid solutions, has been established. The existence of a large miscibility gap between 0.29 ≤ x ≤ 0.92 (±0.02) for the MAPb(I1-x Br x )3 solid solution has been proven. A systematic study of the lattice parameters for the solid solution series at room temperature revealed distinct deviations from Vegard's law. Furthermore, temperature dependent measurements showed that a strong temperature dependency of lattice parameters from the composition is present for iodine rich compositions. In contrast, the bromine rich compositions show an unusually low dependency of the phase transition temperature from the degree of substitution.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 5): 445-449, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297550

RESUMEN

Perovskites are widely known for their enormous possibility of elemental substitution, which leads to a large variety of physical properties. Hybrid perovskites such as CH3NH3PbI3 (MAPbI3) and CH3NH3PbCl3 (MAPbCl3) are perovskites with an A[XII]B[VI]X[II]3-structure, where A is an organic molecule, B is a lead(II) cation and X is a halide anion of iodine or chlorine. Whereas MAPbCl3 crystallizes in the cubic space group Pm{\overline 3}m, MAPbI3 is in the tetragonal space group I4/mcm. The substitution of I by Cl leads to an increased tolerance against humidity but is challenging or even impossible due to their large difference in ionic radii. Here, the influence of an increasing Cl content in the reaction solution on the miscibility of the solid solution members is examined systematically. Powders were synthesized by two different routes depending on the I:Cl ratio. High-resolution synchrotron X-ray data are used to establish values for the limits of the miscibility gap which are 3.1 (1.1) mol% MAPbCl3 in MAPI and 1.0 (1) mol% MAPbI3 in MAPCl. The establishment of relations between average pseudo-cubic lattice parameters for both phases allows a determination of the degree of substitution from the observed lattice parameters.

13.
Nat Commun ; 9(1): 1573, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679030

RESUMEN

Negative gas adsorption (NGA) in ordered mesoporous solids is associated with giant contractive structural transitions traversing through metastable states. Here, by systematically downsizing the crystal dimensions of a mesoporous MOF (DUT-49) from several micrometers to less than 200 nm, counterintuitive NGA phenomena are demonstrated to critically depend on the primary crystallite size. Adsorbing probe molecules, such as n-butane or nitrogen, gives insights into size-dependent activation barriers and thermodynamics associated with guest-induced network contraction. Below a critical crystal size, the nitrogen adsorption-induced breathing is completely suppressed as detected using parallelized synchrotron X-ray diffraction-adsorption instrumentation. In contrast, even the smallest particles show NGA in the presence of n-butane, however, associated with a significantly reduced pressure amplification. Consequently, the magnitude of NGA in terms of amount of gas expulsed and pressure amplification can be tuned, potentially paving the way towards innovative concepts for pressure amplification in micro- and macro-system engineering.

14.
Angew Chem Int Ed Engl ; 56(36): 10676-10680, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28670873

RESUMEN

A flexible, yet very stable metal-organic framework (DUT-98, Zr6 O4 (OH)4 (CPCDC)4 (H2 O)4 , CPCDC=9-(4-carboxyphenyl)-9H-carbazole-3,6-dicarboxylate) was synthesized using a rational supermolecular building block approach based on molecular modelling of metal-organic chains and subsequent virtual interlinking into a 3D MOF. Structural characterization via synchrotron single-crystal X-ray diffraction (SCXRD) revealed the one-dimensional pore architecture of DUT-98, envisioned in silico. After supercritical solvent extraction, distinctive responses towards various gases stimulated reversible structural transformations, as detected using coupled synchrotron diffraction and physisorption techniques. DUT-98 shows a surprisingly low water uptake but a high selectivity for pore opening towards specific gases and vapors (N2 , CO2 , n-butane, alcohols) at characteristic pressure resulting in multiple steps in the adsorption isotherm and hysteretic behavior upon desorption.

15.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28481051

RESUMEN

Corrosive precursors used for the preparation of organic-inorganic hybrid perovskite photoactive layers prevent the application of ultrathin metal layers as semitransparent bottom electrodes in perovskite solar cells (PVSCs). This study introduces tin-oxide (SnOx ) grown by atomic layer deposition (ALD), whose outstanding permeation barrier properties enable the design of an indium-tin-oxide (ITO)-free semitransparent bottom electrode (SnOx /Ag or Cu/SnOx ), in which the metal is efficiently protected against corrosion. Simultaneously, SnOx functions as an electron extraction layer. We unravel the spontaneous formation of a PbI2 interfacial layer between SnOx and the CH3 NH3 PbI3 perovskite. An interface dipole between SnOx and this PbI2 layer is found, which depends on the oxidant (water, ozone, or oxygen plasma) used for the ALD growth of SnOx . An electron extraction barrier between perovskite and PbI2 is identified, which is the lowest in devices based on SnOx grown with ozone. The resulting PVSCs are hysteresis-free with a stable power conversion efficiency (PCE) of 15.3% and a remarkably high open circuit voltage of 1.17 V. The ITO-free analogues still achieve a high PCE of 11%.

16.
Phys Chem Chem Phys ; 18(42): 29258-29267, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27731468

RESUMEN

We have studied the mechanism of hydrogen storage in the aluminium based metal-organic framework CAU-1 or [Al4(OH)2(OCH3)4(O2C-C6H3NH2-CO2)3] using a complementary multidisciplinary approach of volumetric gas sorption analysis, in situ neutron diffraction and spectroscopy and ab initio calculations. The structure of CAU-1 forms two different types of microporous cages: (i) an octahedral cage with a diameter of about 10 Å and (ii) a tetrahedral cage with a diameter of about 5 Å. Though all metal sites of CAU-1 are fully coordinated, the material exhibits relatively high storage capacities, reaching 4 wt% at a temperature of 70 K. Our results reveal that hydrogen sorption is dominantly driven by cooperative guest-guest interactions and interactions between guest hydrogen molecules and organic linkers. The adsorption of hydrogen on the organic linkers leads to the contraction of the host framework structure and as a result to changes in the electronic potential surface inside the pores. This, in turn, leads to cooperative rearrangement of the molecules inside the pores and to the formation of additionally occupied positions, increasing hydrogen uptake. At the final stage we observe the formation of solid amorphous hydrogen inside the pores.

17.
Inorg Chem ; 55(11): 5384-97, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27175821

RESUMEN

Single crystals as well as polycrystalline samples of GaNbO4, Ga(Ta,Nb)O4, and GaTaO4 were grown from the melt and by solid-state reactions, respectively, at various temperatures between 1698 and 1983 K. The chemical composition of the crystals was confirmed by wavelength-dispersive electron microprobe analysis, and the crystal structures were determined by single-crystal X-ray diffraction. In addition, a high-P-T synthesis of GaNbO4 was performed at a pressure of 2 GPa and a temperature of 1273 K. Raman spectroscopy of all compounds as well as Rietveld refinement analysis of the powder X-ray diffraction pattern of GaNbO4 were carried out to complement the structural investigations. Density functional theory (DFT) calculations enabled the assignment of the Raman bands to specific vibrational modes within the structure of GaNbO4. To determine the hardness (H) and elastic moduli (E) of the compounds, nanoindentation experiments have been performed with a Berkovich diamond indenter tip. Analyses of the load-displacement curves resulted in a high hardness of H = 11.9 ± 0.6 GPa and a reduced elastic modulus of Er = 202 ± 9 GPa for GaTaO4. GaNbO4 showed a lower hardness of H = 9.6 ± 0.5 GPa and a reduced elastic modulus of Er = 168 ± 5 GPa. Spectroscopic ellipsometry of the polished GaTa0.5Nb0.5O4 ceramic sample was employed for the determination of the optical constants n and k. GaTa0.5Nb0.5O4 exhibits a high average refractive index of nD = 2.20, at λ = 589 nm. Furthermore, in situ high-temperature powder X-ray diffraction experiments enabled the study of the thermal expansion tensors of GaTaO4 and GaNbO4, as well as the ability to relate them with structural features.

18.
Nature ; 532(7599): 348-52, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27049950

RESUMEN

Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

19.
Dalton Trans ; 45(10): 4407-15, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26876816

RESUMEN

A new approach for the fine tuning of flexibility in MOFs, involving functionalization of the secondary building unit, is presented. The "gate pressure" MOF [Zn3(bpydc)2(HCOO)2] was used as a model material and SBU functionalization was performed by using monocarboxylic acids such as acetic, benzoic or cinnamic acids instead of formic acid in the synthesis. The resulting materials are isomorphous to [Zn3(bpydc)2(HCOO)2] in the "as made" form, but show different structural dynamics during the guest removal. The activated materials have entirely different properties in the nitrogen physisorption experiments clearly showing the tunability of the gate pressure, at which the structural transformation occurs, by using monocarboxylic acids with varying backbone structure in the synthesis. Thus, increasing the number of carbon atoms in the backbone leads to the decreasing gate pressure required to initiate the structural transition. Moreover, in situ adsorption/PXRD data suggest differences in the mechanism of the structural transformations: from "gate opening" in the case of formic acid to "breathing" if benzoic acid is used.

20.
Nat Commun ; 6: 8560, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26440403

RESUMEN

Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites-rather than individual acceptor molecules-should be regarded as the dopants in such systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...