Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13428, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596293

RESUMEN

Controlling biofilm formation in the oral cavity during orthodontic treatments is crucial. Therefore, antimicrobial surfaces for invisible dental appliances are of interest to both therapists and patients. Here we present a cellulose-based thermoformable material used for invisible braces that can be loaded with essential oils (EOs) having antibacterial and antifungal properties. We hypothesize that this material can absorb and release EOs, thus providing an antimicrobial effect without compromising the safety and mechanical properties necessary for dental invisible braces. Conventional microbiology and isothermal microcalorimetry analyses revealed that the thermoformable material loaded with essential oils significantly delayed the biofilm formation of oral streptococci (S. mutans and S. mitis) under static conditions (p < 0.05) and while simulating saliva flow (p < 0.05). In addition, cytotoxicity tests (ISO 10993-5), revealed that the loaded material is well tolerated by human gingival fibroblasts. Finally, the loading with antibacterial agents did not significantly alter the mechanical properties and stability of the material (initial force (p = 0.916); initial stress (p = 0.465)). Compared to gold-standard clear aligner materials, this material offers a reliable transmission of forces for orthodontic treatments. Moreover, this approach exhibits the potential for acting as an oral drug delivery platform for multiple compounds.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Soportes Ortodóncicos , Humanos , Antibacterianos/farmacología , Celulosa , Aceites Volátiles/farmacología , Biopelículas
2.
J Med Imaging (Bellingham) ; 9(3): 031509, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36267352

RESUMEN

Purpose: The morphology of a polymer aligner, designed according to an orthodontic treatment plan, determines clinical outcomes. A fundamental element of orthodontic tooth movement with aligner treatment is the fit of the aligner's surface to the individual teeth. Gaps between the aligner and teeth do occur because current aligner fabrication is not capable of completely reproducing the complex anatomy of the individual denture. Our study aims at a quantitative three-dimensional assessment of the fit between optically transparent aligners placed on a polymeric model of the upper dental arch for two thermofoil thicknesses at preselected thermoforming temperatures. Approach: Using an intraoral scan of a subject's upper dental arch, eight models were printed using a stereolithographic system. A series of eight NaturAligners® was manufactured with a pressure molding process, using thermofoils with thicknesses of 550 and 750 µ m and preselected process temperatures between 110°C and 210°C. These aligners placed on the corresponding models were imaged by an advanced micro computed tomography system. The aligners and the models were segmented to extract the gaps and aligners' local thicknesses as a function of the processing temperature for the two foil thicknesses. Results: The results indicate that the aligners show a better fit when the foils are processed at higher temperatures. Nevertheless, processing temperatures can be kept below 150°C, as the gain becomes negligible. Thermal processing reduces the average thickness of the aligners to 60% with respect to the planar starting foil. These thickness distributions demonstrate that the aligners are generally thicker on the occlusal surfaces of molars and premolars but thinner around the incisors and buccal as well as on oral surfaces. Conclusions: Hard x-ray tomography with micrometer resolution is a powerful technique employed to localize the gaps between aligners and teeth, and it also enables film thickness measurements after thermoforming. The thicker film on the occlusal surfaces is most welcome because of aligner abrasion during wear. The NaturAligner® surfaces consist of a 25 - µ m -thin cellulose layer, and thus the microplastics released via abrasion of less than this thickness are expected to be substantially less critical than for other commercially available, optically transparent aligners.

3.
J Appl Microbiol ; 132(2): 1018-1024, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34480822

RESUMEN

AIMS: In the context of minor orthodontic intervention using clear aligner technologies, we determined antimicrobial properties of a cellulose-based material loaded with essential oils such as cinnamaldehyde. METHODS AND RESULTS: Isothermal microcalorimetry was used to assess the growth of bacterial biofilms at the interface between the tested material and the solid growth medium. The calorimetric data were analyzed using conventional growth models (Gompertz and Richards), and inhibition at 12 and 24 h was calculated. CONCLUSIONS: The tested material showed antimicrobial properties against Staphylococcus epidermidis as well as Streptococcus mutans and Streptococcus mitis clinical isolates. The inhibition was more pronounced against S. epidermidis, for which growth rate was reduced by 70% and lag phase was extended by 12 h. For S. mutans and S. mitis, the decrease in growth rate was 20% and 10%, and the lag phase increased by 2 and 6 h, respectively. SIGNIFICANCE AND IMPACT: Clear aligners for minor teeth alignment are becoming very popular. As they must be worn for at least 22 h per day for up to 40 weeks, it is important that they remain clean and do not promote caries formation or other oral infections. Therefore, introducing material with antimicrobial properties is expected to maintain oral hygiene during the aligner therapy. Here, we demonstrate the use of cinnamaldehyde for reducing microbial growth and biofilm formation on cellulose-based dental clear aligners.


Asunto(s)
Antiinfecciosos , Caries Dental , Acroleína/análogos & derivados , Antiinfecciosos/farmacología , Biopelículas , Celulosa , Humanos , Streptococcus mutans
4.
Langmuir ; 32(13): 3276-83, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26978236

RESUMEN

Low-voltage dielectric actuators (DEAs) can be fabricated using submicrometer-thin polydimethylsiloxane (PDMS) films. The two established techniques, namely spin coating and molecular beam deposition, however, are inappropriate to produce multistack DEAs in an efficient way. Therefore, we propose an alternative deposition technique, i.e., the alternating current electrospray deposition (ACESD) of 5 vol % PDMS in ethyl acetate solution and subsequent ultraviolet light curing. Atomic force microscopy makes possible the three-dimensional analysis of cured droplet-like islands. These circular islands, prepared on 2 in. Si(100) wafers from four polymers with molecular masses between 800 and 62,700 g/mol, reveal a characteristic morphology with an increasing height-to-diameter ratio. Using the 6000 g/mol polymer for ACESD, the film morphology evolution was tracked by applying conventional optical microscopy and spectroscopic ellipsometry. When the deposition was terminated after 13 s, circular islands with a mean height of 30 nm were found, while terminating the deposition after about 155 s led to a confluent layer with a mean height of 91 ± 10 nm. Potential electrostatic interactions between the droplets could not be identified through the analysis of spatial island distribution. Nevertheless, ACESD is a budget-priced and competitive deposition technique that can be employed to fabricate submicrometer-thin PDMS films with true nanometer roughness.

5.
Opt Lett ; 36(18): 3587-9, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21931399

RESUMEN

We demonstrate a 2 µm semiconductor disk laser emitting in a single longitudinal mode with a linewidth in the <10 kHz range. A heterodyne detection scheme was used for precise linewidth measurements. In these experiments, the output beams of two identical laser cavities were superposed in order to generate a beat note signal on a photodiode. In the absence of active frequency stabilization, a linewidth of 45 kHz was measured at an output power of 100 mW. When using a frequency stabilization consisting of a feedback loop with a Fabry-Perot interferometer as wavelength reference, the linewidth could be further reduced to 9 kHz.

6.
Opt Lett ; 36(3): 319-21, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21283176

RESUMEN

We demonstrate an optically pumped semiconductor disk laser based on the (AlGaIn)(AsSb) material system, which operates at an emission wavelength of 2.8 µm. Up to 120 mW of output power were obtained in cw operation and more than 500 mW in pulsed mode. The performance of the present laser is discussed in comparison to shorter-wavelength semiconductor disk lasers based on the same materials system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...