RESUMEN
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other's functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing.
RESUMEN
Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of H2S in several pathological processes and provided a rationale for considering the therapeutic implications of H2S in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing H2S donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with H2S-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.
RESUMEN
Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.
Asunto(s)
Ácido Glutámico , Complejo Cetoglutarato Deshidrogenasa , Ratas , Animales , Ácido Glutámico/metabolismo , Estudios Retrospectivos , Citoplasma/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacología , Óxido Nítrico/metabolismoRESUMEN
Cancer patients undergoing paclitaxel infusion usually experience peripheral nerve degeneration and serious neuropathic pain termed paclitaxel-induced peripheral neuropathy (PIPN). However, alterations in the dose or treatment schedule for paclitaxel do not eliminate PIPN, and no therapies are available for PIPN, despite numerous studies to uncover the mechanisms underlying the development/maintenance of this condition. Therefore, we aimed to uncover a novel mechanism underlying the pathogenesis of PIPN. Clinical studies suggest that acute over excitation of primary sensory neurons is linked to the pathogenesis of PIPN. We found that paclitaxel-induced acute hyperexcitability of primary sensory neurons results from the paclitaxel-induced inhibition of KCNQ potassium channels (mainly KCNQ2), found abundantly in sensory neurons and axons. We found that repeated application of XE-991, a specific KCNQ channel blocker, induced PIPN-like alterations in rats, including mechanical hypersensitivity and degeneration of peripheral nerves, as detected by both morphological and behavioral assays. In contrast, genetic deletion of KCNQ2 from peripheral sensory neurons in mice significantly attenuated the development of paclitaxel-induced peripheral sensory fiber degeneration and chronic pain. These findings may lead to a better understanding of the causes of PIPN and provide an impetus for developing new classes of KCNQ activators for its therapeutic treatment.
Asunto(s)
Dolor Crónico , Neuralgia , Ratas , Ratones , Animales , Paclitaxel/efectos adversos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Células Receptoras SensorialesRESUMEN
OBJECTIVE: Activation of the constitutive nuclear and mitochondrial enzyme poly (ADP-ribose) polymerase (PARP) has been implicated in the pathogenesis of cell dysfunction, inflammation, and organ failure in various forms of critical illness. The objective of our study was to evaluate the efficacy and safety of the clinically approved PARP inhibitor olaparib in an experimental model of pancreatitis in vivo and in a pancreatic cell line subjected to oxidative stress in vitro. The preclinical studies were complemented with analysis of clinical samples to detect PARP activation in pancreatitis. METHODS: Mice were subjected to cerulein-induced pancreatitis; circulating mediators and circulating organ injury markers; pancreatic myeloperoxidase and malondialdehyde levels were measured and histology of the pancreas was assessed. In human pancreatic duct epithelial cells (HPDE) subjected to oxidative stress, PARP activation was measured by PAR Western blotting and cell viability and DNA integrity were quantified. In clinical samples, PARP activation was assessed by PAR (the enzymatic product of PARP) immunohistochemistry. RESULTS: In male mice subjected to pancreatitis, olaparib (3âmg/kg i.p.) improved pancreatic function: it reduced pancreatic myeloperoxidase and malondialdehyde levels, attenuated the plasma amylase levels, and improved the histological picture of the pancreas. It also attenuated the plasma levels of pro-inflammatory mediators (TNF-α, IL-1ß, IL-2, IL-4, IL-6, IL-12, IP-10, KC) but not MCP-1, RANTES, or the anti-inflammatory cytokine IL-10. Finally, it prevented the slight, but significant increase in plasma blood urea nitrogen level, suggesting improved renal function. The protective effect of olaparib was also confirmed in female mice. In HPDE cells subjected to oxidative stress olaparib (1âµM) inhibited PARP activity, protected against the loss of cell viability, and prevented the loss of cellular NAD levels. Olaparib, at 1µM to 30âµM did not have any adverse effects on DNA integrity. In human pancreatic samples from patients who died of pancreatitis, increased accumulation of PAR was demonstrated. CONCLUSION: Olaparib improves organ function and tempers the hyperinflammatory response in pancreatitis. It also protects against pancreatic cell injury in vitro without adversely affecting DNA integrity. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of pancreatitis.
Asunto(s)
Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Técnicas de Cultivo de Célula , Línea Celular , Ceruletida , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/patología , Pancreatitis/etiologíaRESUMEN
BACKGROUND AND PURPOSE: During angiogenesis, quiescent endothelial cells (ECs) are activated by various stimuli to form new blood vessels from pre-existing ones in physiological and pathological conditions. Many research groups have shown that hydrogen sulfide (H2 S), the newest member of the gasotransmitter family, acts as a proangiogenic factor. To date, very little is known about the regulatory role of 3-mercaptopyruvate sulfurtransferase (3-MST), an important H2 S-producing enzyme in ECs. The aim of our study was to explore the potential role of 3-MST in human EC bioenergetics, metabolism, and angiogenesis. EXPERIMENTAL APPROACH: To assess in vitro angiogenic responses, we used EA.hy926 human vascular ECs subjected to shRNA-mediated 3-MST attenuation and pharmacological inhibition of proliferation, migration, and tube-like network formation. To evaluate bioenergetic parameters, cell respiration, glycolysis, glucose uptake, and mitochondrial/glycolytic ATP production were measured. Finally, global metabolomic profiling was performed to determine the level of 669 metabolic compounds. KEY RESULTS: 3-MST-attenuated ECs subjected to shRNA or pharmacological inhibition of 3-MST significantly reduced EC proliferation, migration, and tube-like network formation. 3-MST silencing also suppressed VEGF-induced EC migration. From bioenergetic and metabolic standpoints, 3-MST attenuation decreased mitochondrial respiration and mitochondrial ATP production, increased glucose uptake, and perturbed the entire EC metabolome. CONCLUSION AND IMPLICATIONS: 3-MST regulates bioenergetics and morphological angiogenic functions in human ECs. The data presented in the current report support the view that 3-MST pathway may be a potential candidate for therapeutic modulation of angiogenesis. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Asunto(s)
Células Endoteliales , Sulfuro de Hidrógeno , Sulfurtransferasas/metabolismo , Células Endoteliales/metabolismo , Metabolismo Energético , HumanosRESUMEN
Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. In U937 cells subjected to oxidative stress, cellular bioenergetics, viability and DNA integrity were measured. Olaparib was used to inhibit PARP. The results show that in adult male mice subjected to CLP, olaparib (1-10 mg/kg i.p.) improved multiorgan dysfunction. Olaparib treatment reduced the degree of bacterial CFUs. Olaparib attenuated the increases in the levels of several circulating mediators in the plasma. In the spleen, the number of CD4+ and CD8+ lymphocytes were reduced in response to CLP; this reduction was inhibited by olaparib treatment. Treg but not Th17 lymphocytes increased in response to CLP; these cell populations were reduced in sepsis when the animals received olaparib. The Th17/Treg ratio was lower in CLP-olaparib group than in the CLP control group. Analysis of miRNA expression identified a multitude of changes in spleen and circulating white blood cell miRNA levels after CLP; olaparib treatment selectively modulated these responses. Olaparib extended the survival rate of mice subjected to CLP. In contrast to males, in female mice olaparib did not have significant protective effects in CLP. In aged mice olaparib exerted beneficial effects that were less pronounced than the effects obtained in young adult males. In in vitro experiments in U937 cells subjected to oxidative stress, olaparib (1-100 µM) inhibited PARP activity, protected against the loss of cell viability, preserved NAD+ levels and improved cellular bioenergetics. In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
Asunto(s)
Antiinflamatorios/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Ciego , Citocinas/sangre , ADN/efectos de los fármacos , Reposicionamiento de Medicamentos , Femenino , Humanos , Ligadura , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Recuento de Linfocitos , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Punciones , Sepsis/sangre , Sepsis/inmunología , Sepsis/patología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/patología , Células U937RESUMEN
The biological mediator hydrogen sulfide (H2S) is produced by bacteria and has been shown to be cytoprotective against oxidative stress and to increase the sensitivity of various bacteria to a range of antibiotic drugs. Here we evaluated whether bacterial H2S provides resistance against the immune response, using two bacterial species that are common sources of nosocomial infections, Escherichia coli and Staphylococcus aureus Elevations in H2S levels increased the resistance of both species to immune-mediated killing. Clearances of infections with wild-type and genetically H2S-deficient E. coli and S. aureus were compared in vitro and in mouse models of abdominal sepsis and burn wound infection. Also, inhibitors of H2S-producing enzymes were used to assess bacterial killing by leukocytes. We found that inhibition of bacterial H2S production can increase the susceptibility of both bacterial species to rapid killing by immune cells and can improve bacterial clearance after severe burn, an injury that increases susceptibility to opportunistic infections. These findings support the role of H2S as a bacterial defense mechanism against the host response and implicate bacterial H2S inhibition as a potential therapeutic intervention in the prevention or treatment of infections.
Asunto(s)
Infecciones por Escherichia coli/patología , Escherichia coli/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Sulfuro de Hidrógeno/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Escherichia coli/inmunología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Evasión Inmune , Leucocitos/inmunología , Masculino , Ratones Endogámicos BALB C , Viabilidad Microbiana , Sepsis/microbiología , Sepsis/patología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Infección de Heridas/microbiología , Infección de Heridas/patologíaRESUMEN
The role of the three gasotransmitter systems - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) - in cancer cells has not yet been studied simultaneously in the same experimental system. We measured the expression of NO and CO and H2S generating enzymes in primary colon cancer tissues and HCT116 colon cancer cells, and evaluated the effect of their pharmacological inhibition or pharmacological donation on cell proliferation. Increased expression of iNOS, nNOS, HO-1, CBS and 3-MST was detected in colon cancer. Inhibitors of NOS, HO-1/2, CBS/CSE and 3-MST, at lower concentrations, slightly stimulated HCT116 cell proliferation, but inhibited proliferation at higher concentrations. Donors of NO, CO or H2S inhibited HCT116 proliferation in a concentration-dependent manner. Inhibition of the cGMP/VASP pathway, Akt and p44/42 MAPK (Erk1/2) inhibited HCT116 cell proliferation. Endogenous NO and H2S biosynthesis were found to play a role in the maintenance of the activity of the cGMP/VASP pathway in HCT116 cells. We conclude that each of the three gasotransmitters play similar, bell-shaped roles in the control of HCT116 cell proliferation: endogenously produced NO, CO and H2S, at an optimal concentration, support HCT116 proliferation; inhibition of their production (which decreases gasotransmitter levels below optimal concentrations) as well as exogenous delivery of these gasotransmitters (which increases gasotransmitter levels above optimal concentrations) suppresses colon cancer cell proliferation. The current data give a mechanistic explanation for the paradoxical finding that both inhibitors and donors of NO, CO and H2S exert anticancer actions in cancer cells.
Asunto(s)
Monóxido de Carbono/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Sulfuro de Hidrógeno/farmacología , Óxido Nítrico/farmacología , Monóxido de Carbono/metabolismo , Supervivencia Celular/efectos de los fármacos , Gasotransmisores/metabolismo , Gasotransmisores/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismoRESUMEN
Adenosine, a key extracellular signaling mediator, regulates several aspects of metabolism by activating 4 G-protein-coupled receptors, the A1, A2A, A2B, and A3 adenosine receptors (ARs). The role of A2AARs in regulating high-fat-diet (HFD)-induced metabolic derangements is unknown. To evaluate the role of A2AARs in regulating glucose and insulin homeostasis in obesity, we fed A2AAR-knockout (KO) and control mice an HFD for 16 wk to initiate HFD-induced metabolic disorder. We found that genetic deletion of A2AARs caused impaired glucose tolerance in mice fed an HFD. This impaired glucose tolerance was caused by a decrease in insulin secretion but not in insulin sensitivity. Islet size and insulin content in pancreata of A2AAR-deficient mice were decreased compared with control mice after consuming an HFD. A2AAR-KO mice had decreased expression of the ß-cell-specific markers pdx1, glut2, mafA, and nkx6.1 and increased expression of the dedifferentiation markers sox2 and hes1. Ex vivo islet experiments confirmed the role of A2AARs in protecting against decreased insulin content and release caused by HFD. Other experiments with bone marrow chimeras revealed that inflammation was not the primary cause of decreased insulin secretion in A2AAR-KO mice. Altogether, our data showed that A2AARs control pancreatic dysfunction in HFD-induced obesity.-Csóka, B., Töro, G., Vindeirinho, J., Varga, Z. V., Koscsó, B., Németh, Z. H., Kókai, E., Antonioli, L., Suleiman, M., Marchetti, P., Cseri, K., Deák, Á., Virág, L., Pacher, P., Bai, P., Haskó, G. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity.
Asunto(s)
Grasas de la Dieta/efectos adversos , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Enfermedades Pancreáticas/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/patología , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/patología , Enfermedades Pancreáticas/inducido químicamente , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/patología , Receptor de Adenosina A2A/genéticaRESUMEN
Cystathionine-ß-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the 'Killer Plates' collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: â¼60µM), tannic acid (IC50: â¼40µM) and benserazide (IC50: â¼30µM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: â¼3µM) and NSC67078 (IC50: â¼1µM), while aurintricarboxylic acid (IC50: â¼3µM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: â¼1µM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of â¼6µM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: â¼6µM), tannic acid (IC50: â¼20µM), benserazide (IC50: â¼20µM), and NSC67078 (IC50: â¼0.3µM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: â¼300µM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300µM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300µM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100µM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50mg/kg/days.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.
Asunto(s)
Benserazida/farmacología , Neoplasias del Colon/tratamiento farmacológico , Cistationina betasintasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/farmacología , Reposicionamiento de Medicamentos/métodos , Metabolismo Energético/efectos de los fármacos , Femenino , Células HCT116 , Células HT29 , Humanos , Hidrazinas/farmacología , Sulfuro de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Terapias en Investigación/métodosRESUMEN
Colon cancer cells contain high levels of cystathionine-beta-synthase (CBS). Its product, hydrogen sulfide (H2S) promotes the growth and proliferation of colorectal tumor cells. In order to improve the antitumor efficacy of the prototypical CBS inhibitor aminooxyacetic acid (AOAA), we have designed and synthesized YD0171, a methyl ester derivative of AOAA. The antiproliferative effect of YD0171 exceeded the antiproliferative potency of AOAA in HCT116 human colon cancer cells. The esterase inhibitor paraoxon prevented the cellular inhibition of CBS activity by YD0171. YD0171 suppressed mitochondrial respiration and glycolytic function and induced G0/G1 arrest, but did not induce tumor cell apoptosis or necrosis. Metabolomic analysis in HCT116 cells showed that YD0171 affects multiple pathways of cell metabolism. The efficacy of YD0171 as an inhibitor of tumor growth was also tested in nude mice bearing subcutaneous HCT116 cancer cell xenografts. Animals were treated via subcutaneous injection of vehicle, AOAA (1, 3 or 9 mg/kg/day) or YD0171 (0.1, 0.5 or 1 mg/kg/day) for 3 weeks. Tumor growth was significantly reduced by 9 mg/kg/day AOAA, but not at the lower doses. YD0171 was more potent: tumor volume was significantly inhibited at 0.5 and 1 mg/kg/day. Thus, the in vivo efficacy of YD0171 is 9-times higher than that of AOAA. YD0171 (1 mg/kg/day) attenuated tumor growth and metastasis formation in the intracecal HCT116 tumor model. YD0171 (3 mg/kg/day) also reduced tumor growth in patient-derived tumor xenograft (PDTX) bearing athymic mice. YD0171 (3 mg/kg/day) induced the regression of established HCT116 tumors in vivo. A 5-day safety study in mice demonstrated that YD0171 at 20 mg/kg/day (given in two divided doses) does not increase plasma markers of organ injury, nor does it induce histological alterations in the liver or kidney. YD0171 caused a slight elevation in plasma homocysteine levels. In conclusion, the prodrug approach improves the pharmacological profile of AOAA; YD0171 represents a prototype for CBS inhibitory anticancer prodrugs. By targeting colorectal cancer bioenergetics, an emerging important hallmark of cancer, the approach exemplified herein may offer direct translational opportunities.
RESUMEN
Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 µM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 µM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 µM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 µM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis.
Asunto(s)
Adenosina Trifosfato/inmunología , Macrófagos/inmunología , Receptores Purinérgicos P2X7/inmunología , Sepsis/inmunología , Transducción de Señal/inmunología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/genética , Traslado Adoptivo , Animales , Bacterias/inmunología , Inflamasomas/genética , Inflamasomas/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Receptores Purinérgicos P2X7/genética , Sepsis/genética , Sepsis/microbiología , Sepsis/patología , Transducción de Señal/genéticaRESUMEN
Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host's response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 µM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.
Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Inflamación/prevención & control , Sepsis/metabolismo , 5'-Nucleotidasa/metabolismo , Animales , Antígenos CD/genética , Apirasa/deficiencia , Apirasa/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Escherichia coli/patogenicidad , Humanos , Inflamación/metabolismo , Interleucina-10/biosíntesis , Interleucina-12/biosíntesis , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Sepsis/microbiología , Quimera por TrasplanteRESUMEN
Obesity causes increased classical and decreased alternative macrophage activation, which in turn cause insulin resistance in target organs. Because A2B adenosine receptors (ARs) are important regulators of macrophage activation, we examined the role of A2B ARs in adipose tissue inflammation and insulin resistance. A2B AR deletion impaired glucose and lipid metabolism in mice fed chow but not a high-fat diet, which was paralleled by dysregulation of the adipokine system, and increased classical macrophage activation and inhibited alternative macrophage activation. The expression of alternative macrophage activation-specific transcriptions factors, including CCAAT/enhancer-binding protein-ß, interferon regulatory factor 4, and peroxisome proliferator-activated receptor-γ, was decreased in adipose tissue of A2B AR-deficient mice. Furthermore, in in vitro studies, we found that stimulation of A2B ARs suppressed free fatty acid-induced deleterious inflammatory and metabolic activation of macrophages. Moreover, AR activation upregulated the interleukin-4-induced expression of CCAAT/enhancer-binding protein-ß, interferon regulatory factor 4, and peroxisome proliferator-activated receptor-γ in macrophages. Altogether, our results indicate that therapeutic strategies targeting A2B ARs hold promise for preventing adipose tissue inflammation and insulin resistance.