Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(6): 231804, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100180

RESUMEN

Non-iridescent structural plumage reflectance is a sexually selected indicator of individual quality in several bird species. However, the structural basis of individual differences remains unclear. In particular, the dominant periodicity of the quasi-ordered feather barb nanostructure is of key importance in colour generation, but no study has successfully traced back reflectance parameters, and particularly hue, to nanostructural periodicity, although this would be key to deciphering the information content of individual variation. We used matrix small-angle X-ray scattering measurements of intact, stacked feather samples from the blue tit crown to estimate the sex-dependence and individual variation of nanostructure and its effects on light reflectance. Measures of nanostructural periodicity successfully predicted brightness, ultraviolet chroma and also hue, with statistically similar effects in the two sexes. However, we also observed a lack of overall effect of the nanostructural inhomogeneity estimate on reflectance chromaticity, sex-dependent accuracy in hue prediction and strong sex-dependence in position estimation error. We suggest that reflectance attributes are modified by other feather structures in a sex-specific manner, and that within-individual variation in nanostructural parameters exists within or among feathers and this confounds the interpretation of structure-reflectance relationships at the plumage area level.

2.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747336

RESUMEN

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Pájaros Cantores , Animales , Pájaros Cantores/genética , Pájaros Cantores/clasificación , Genética de Población/métodos , Europa (Continente) , Passeriformes/genética , Passeriformes/clasificación , Haplotipos/genética , Recombinación Genética , Selección Genética
3.
J Evol Biol ; 37(5): 566-576, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38623610

RESUMEN

Temporal changes in environmental conditions may play a major role in the year-to-year variation in fitness consequences of behaviours. Identifying environmental drivers of such variation is crucial to understand the evolutionary trajectories of behaviours in natural contexts. However, our understanding of how environmental variation influences behaviours in the wild remains limited. Using data collected over 14 breeding seasons from a collared flycatcher (Ficedula albicollis) population, we examined the effect of environmental variation on the relationship between survival and risk-taking behaviour, a highly variable behavioural trait with great evolutionary and ecological significance. Specifically, using annual recapture probability as a proxy of survival, we evaluated the specific effect of predation pressure, food availability, and mean temperature on the relationship between annual recapture probability and risk-taking behaviour (measured as flight initiation distance [FID]). We found a negative trend, as the relationship between annual recapture probability and FID decreased over the study years and changed from positive to negative. Specifically, in the early years of the study, risk-avoiding individuals exhibited a higher annual recapture probability, whereas in the later years, risk-avoiders had a lower annual recapture probability. However, we did not find evidence that any of the considered environmental factors mediated the variation in the relationship between survival and risk-taking behaviour.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Ambiente , Asunción de Riesgos , Masculino , Femenino , Estaciones del Año
4.
Sci Total Environ ; 926: 171945, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531456

RESUMEN

Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Passeriformes/fisiología , Tiempo (Meteorología) , Estaciones del Año , Cambio Climático , Reproducción , Migración Animal/fisiología
5.
Ecol Evol ; 14(2): e10981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352200

RESUMEN

Assessing additive genetic variance is a crucial step in predicting the evolutionary response of a target trait. However, the estimated genetic variance may be sensitive to the methodology used, e.g., the way relatedness is assessed among the individuals, especially in wild populations where social pedigrees can be inaccurate. To investigate this possibility, we investigated the additive genetic variance in tarsus length, a major proxy of skeletal body size in birds. The model species was the collared flycatcher (Ficedula albicollis), a socially monogamous but genetically polygamous migratory passerine. We used two relatedness matrices to estimate the genetic variance: (1) based solely on social links and (2) a genetic similarity matrix based on a large array of single-nucleotide polymorphisms (SNPs). Depending on the relatedness matrix considered, we found moderate to high additive genetic variance and heritability estimates for tarsus length. In particular, the heritability estimates were higher when obtained with the genetic similarity matrix instead of the social pedigree. Our results confirm the potential for this crucial trait to respond to selection and highlight methodological concerns when calculating additive genetic variance and heritability in phenotypic traits. We conclude that using a social pedigree instead of a genetic similarity matrix to estimate relatedness among individuals in a genetically polygamous wild population may significantly deflate the estimates of additive genetic variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...