Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Phys Chem A ; 113(43): 12035-43, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19780522

RESUMEN

We investigate the suitability of density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) for the title reaction, which serves as a model to represent the key step in a recently developed B-C bond formation reaction. CBS-QB3 is employed as a reference throughout this study. The classical barrier height associated with the concerted transition state for the H/Br exchange reaction poses a serious challenge to most standard GGAs or hybrid functionals. In particular the popular B3LYP hybrid functional shows dramatically overestimated reaction barriers (by 12 kcal mol(-1)) for the largest system with R = C(2)H(5). We find that a proper description of intramolecular dispersion interactions arising in the transition state is crucial for a correct assessment of this reaction and that the inclusion of Grimme's empirical dispersion correction effectively compensates for most of the errors to a large extent. In conclusion we find a pleasing performance of the dispersion corrected functionals B2PLYP-D or B3LYP-D for the present set of systems if used in combination with basis sets of triple-zeta quality, which we recommend for future quantum chemical studies on related systems. Also the recently devised M05-2X hybrid meta-GGA shows an excellent performance, in particular if used in combination with the small SVP basis.

3.
Inorg Chem ; 48(3): 1005-17, 2009 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-19105734

RESUMEN

The tetraphosphenediides M2[t-Bu3SiPPPPSi-t-Bu3] (M = Li, Na, K) were accessible by the reaction of P4 with the silanides M[Si-t-Bu3] (M = Li, Na, K), whereas M2[t-Bu3SiPPPPSi-t-Bu3] (M = Rb, Cs) were obtained from the reaction of RbCl and CsF with Na2[t-Bu3SiPPPPSi-t-Bu3]. 31P NMR experiments revealed that, in tetrahydrofuran, Na2[t-Bu3SiPPPPSi-t-Bu3] adopts a cis configuration. However, treatment of Na2[t-Bu3SiPPPPSi-t-Bu3] with 18-crown-6 led to the formation of [Na(18-crown-6)(thf)2]2[t-Bu3SiPPPPSi-t-Bu3] that possesses a trans configuration in the solid state. The ion-separated tetraphosphenediide [Na(18-crown-6)(thf)2]2[t-Bu3SiPPPPSi-t-Bu3] was analyzed using X-ray crystallography (monoclinic, space group P2(1)/n). The reaction of Na2[t-Bu3SiPPPPSi-t-Bu3] with BaI2 gave, conveniently, the corresponding barium derivative Ba[t-Bu3SiPPPPSi-t-Bu3]. However, addition of AuI to the tetraphosphenediide Na2[t-Bu3SiPPPPSi-t-Bu3] yielded 1,3-diiodo-2,4-disupersilyl-cyclotetraphosphane (monoclinic, space group C2/c), which is an isomer of disupersilylated diiodotetraphosphene. A further isomeric derivative of disupersilylated tetraphosphene, the 3,5-disupersilyl-2,2-di-tert-butyl-2-stanna-bicyclo[2.1.0(1,4)]pentaphosphane, which possesses a phosphanylcyclotriphosphane structure, was obtained by the reaction of Na2[t-Bu3SiPPPPSi-t-Bu3] with t-Bu2SnCl2. Calculations revealed that the acyclic cis and trans isomers of the dianions [HPPPPH]2- and [H3SiPPPPSiH3]2- are thermodynamically more stable than the cyclic isomers with a phosphanylcyclotriphosphane or a cyclotetraphosphane structure. However, the neutral cyclic isomers of H4P4 and H2(H3Si)2P4 represent more stable structures than the cis- and trans-tetraphosphenes H2P-P=P-PH2 and (H3Si)HP-P=P-PH(SiH3), respectively. In addition, the molecular orbitals (MOs) of the silylated cis- and trans-tetraphosphene dianions of [H3SiPPPPSiH3]2-, which are comparable with those of the ion-separated supersilylated tetraphosphenediide [t-Bu3SiPPPPSi-t-Bu3]2-, show the highest occupied antibonding pi*MO (HOMO). The HOMO is represented by the (p(z)-p(z)+p(z)-p(z)) pi* MO.

4.
Chemistry ; 14(22): 6754-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18567036

RESUMEN

TMEDA-free (TMEDA: tetramethylethylenediamine) LiCH(2)SMe is a suitable reagent for the selective introduction of (methylthio)methyl groups into PhBBr(2) and its p-silylated derivative Me(3)Si--C(6)H(4)--BBr(2). The resulting compounds, R*--C(6)H(4)--B(Br)(CH(2)SMe) (R*=H: 2; R*=SiMe(3): 7) and PhB(CH(2)SMe)(2) (3), form cyclic dimers through B--S adduct bonds in solution and in the solid state. Compounds 2 and 3 have successfully been used for preparing the (N(2)S) scorpionate [PhBpz(2)(CH(2)SMe)](-) ([5](-)) (pz: pyrazol-1-yl) and the (NS(2)) scorpionate [PhBpz(CH(2)SMe)(2)](-), respectively. Compound 7 proved to be an excellent building block for the heteroditopic poly(pyrazol-1-yl)borate p-[pz(3)B--C(6)H(4)--Bpz(2)(CH(2)SMe)](2-) ([10](2-)) that mimics the two ligation sites of the copper enzymes peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase. Treatment of the monotopic tripod [5](-) with CuCl and CuBr(2) results in the formation of complexes K[Cu(5)(2)] and [Cu(5)(2)]. An X-ray crystallography study of K[Cu(5)(2)] revealed a tetrahedral (N(2)S(2)) coordination environment for the Cu(I) ion, whereas the Cu(II) ion of [Cu(5)(2)] possesses a square-pyramidal (N(4)S) ligand sphere (S-atom in the axial position). The remarkable redox properties of K[Cu(5)(2)] and [Cu(5)(2)] have been assessed by cyclic voltammetry and quantum chemical calculations. The reaction of K[Cu(5)(2)] with dry air leads to the Cu(II) species [Cu(5)(2)] and to a tetranuclear Cu(II) complex featuring [PhB(O)pz(2)](2-) ligands. Addition of CuCl to K(2)[10] gives the complex K(3)[Cu(10)(2)] containing two ligand molecules per Cu(I) center. The Cu(I) ion binds to both heteroscorpionate moieties and thereby establishes a coordination environment similar to that of the Cu(I) ion in K[Cu(5)(2)].


Asunto(s)
Ácidos Bóricos/química , Cobre/química , Enzimas/química , Modelos Moleculares , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA