Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38401050

RESUMEN

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Asunto(s)
2,2'-Dipiridil , Antineoplásicos , Fosfinas , Plata , Humanos , Fosfinas/química , Fosfinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Plata/química , Plata/farmacología , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Cristalografía por Rayos X , Ligandos , Muerte Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Resistencia a Antineoplásicos/efectos de los fármacos
2.
Chempluschem ; 89(4): e202300557, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37937471

RESUMEN

A dinuclear gold(I) complex featuring a strongly donating bis-N-heterocyclic imine ligand was synthesised and characterised by different methods, including single crystal X-ray diffraction (SC-XRD) analysis. The compound has been tested for its antiproliferative effects in a panel of human cancer cell lines in vitro, showing highly selective anticancer effects, particularly against human A549 non-small cell lung cancer cells (NSCLC), with respect to non-tumorigenic cells (VERO). The accumulation of the compound in A549 and VERO cells was studied by high-resolution continuum source atomic absorption spectrometry (HRCS-AAS), revealing that the anticancer effects are not particularly related to the different amounts of gold taken up by the cells over 72 h. Enzyme inhibition studies to evaluate the activity of the seleno-enzyme thioredoxin reductase (TrxR) in cancer cell extracts show that the gold(I) compound is a potent inhibitor (IC50=0.567±0.208 µM), while the free ligand is ineffective. This result correlates with the observed compound's selectivity towards A549 cells overexpressing the enzyme.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Chlorocebus aethiops , Humanos , Oro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Línea Celular Tumoral , Ligandos , Células Vero
3.
Inorg Chem ; 62(39): 16203-16214, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713601

RESUMEN

The biological activity of Pd(II) and Pt(II) complexes toward three different cancer cell lines as well as inhibition of selenoenzyme thioredoxin reductase (TrxR) was modulated in an unexpected way by the introduction of triazolate as a "protective group" to the inner metal coordination sphere using the iClick reaction of [M(N3)(terpy)]PF6 [M = Pd(II) or Pt(II) and terpy = 2,2':6',2″-terpyridine] with an electron-poor alkyne. In a cell proliferation assay using A549, HT-29, and MDA-MB-231 human cancer cell lines, the palladium compound was significantly more potent than the isostructural platinum analogue and exhibited submicromolar activity on the most responsive cell line. This difference was also reflected in the inhibitory efficiency toward TrxR with IC50 values of 0.1 versus 5.4 µM for the Pd(II) and Pt(II) complexes, respectively. UV/Vis kinetic studies revealed that the Pt compound binds to selenocysteine faster than to cysteine [k = (22.9 ± 0.2)·10-3 vs (7.1 ± 0.2)·10-3 s-1]. Selective triazolato ligand exchange of the title compounds with cysteine (Hcys) and selenocysteine (Hsec)─but not histidine (His) and 9-ethylguanine (9EtG)─was confirmed by 1H, 77Se, and 195Pt NMR spectroscopy. Crystal structures of three of the four ligand exchange products were obtained, including [Pt(sec)(terpy)]PF6 as the first metal complex of selenocysteine to be structurally characterized.

4.
Chemistry ; 27(71): 17928-17940, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34714566

RESUMEN

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.


Asunto(s)
Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2/efectos de los fármacos
5.
Chemistry ; 26(66): 15140-15144, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32915473

RESUMEN

Gold complexes have a long tradition in medicine and for many examples antirheumatic, anticancer or anti-infective effects have been confirmed. Herein, we evaluated the lead compound Auranofin and five selected gold organometallics as inhibitors of two relevant drug targets of severe acute respiratory syndrome coronaviruses (SARS-CoV). The gold metallodrugs were effective inhibitors of the interaction of the SARS-CoV-2 spike protein with the angiotensin converting enzyme 2 (ACE2) host receptor and might thus interfere with the viral entry process. The gold metallodrugs were also efficient inhibitors of the papain-like protease (PLpro) of SARS-CoV-1 and SARS-CoV-2, which is a key enzyme in the viral replication. Regarding PLpro from SARS-CoV-2, the here reported inhibitors are among the very first experimentally confirmed examples with activity against this target enzyme. Importantly, the activity of the complexes against both PLpro enzymes correlated with the ability of the inhibitors to remove zinc ions from the labile zinc center of the enzyme. Taken together, the results of this pilot study suggest further evaluation of gold complexes as SARS-CoV antiviral drugs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Auranofina/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Oro/química , Compuestos Organometálicos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Auranofina/química , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Oro/farmacología , Humanos , Terapia Molecular Dirigida , Compuestos Organometálicos/química , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...