Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Dev Cell ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116876

RESUMEN

Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor ß (TGF-ß) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-ß, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.

2.
Proc Natl Acad Sci U S A ; 121(28): e2310992121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968105

RESUMEN

Tissue buckling is an increasingly appreciated mode of morphogenesis in the embryo, but it is often unclear how geometric and material parameters are molecularly determined in native developmental contexts to generate diverse functional patterns. Here, we study the link between differential mechanical properties and the morphogenesis of distinct anteroposterior compartments in the intestinal tract-the esophagus, small intestine, and large intestine. These regions originate from a simple, common tube but adopt unique forms. Using measured data from the developing chick gut coupled with a minimal theory and simulations of differential growth, we investigate divergent lumen morphologies along the entire early gut and demonstrate that spatiotemporal geometries, moduli, and growth rates control the segment-specific patterns of mucosal buckling. Primary buckling into wrinkles, folds, and creases along the gut, as well as secondary buckling phenomena, including period-doubling in the foregut and multiscale creasing-wrinkling in the hindgut, are captured and well explained by mechanical models. This study advances our existing knowledge of how identity leads to form in these regions, laying the foundation for future work uncovering the relationship between molecules and mechanics in gut morphological regionalization.


Asunto(s)
Morfogénesis , Animales , Embrión de Pollo , Morfogénesis/fisiología , Fenómenos Biomecánicos , Pollos , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/anatomía & histología , Modelos Biológicos , Intestinos/fisiología , Intestinos/embriología
3.
Ecol Evol ; 14(4): e11192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571802

RESUMEN

The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.

4.
Dev Cell ; 59(3): 415-430.e8, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38320485

RESUMEN

The early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb. Taking advantage of a direct reprogramming approach, we find a set of factors (Prdm16, Zbtb16, and Lin28a) normally expressed in the early limb bud and capable of imparting limb progenitor-like properties to mouse non-limb fibroblasts. The reprogrammed cells show similar gene expression profiles and can differentiate into similar cell types as endogenous limb progenitors. The further addition of Lin41 potentiates the proliferation of the reprogrammed cells. These results suggest that these same four factors may play pivotal roles in the specification of endogenous limb progenitors.


Asunto(s)
Extremidades , Proteínas , Ratones , Animales , Proteínas/metabolismo , Fibroblastos , Mesodermo/metabolismo , Esbozos de los Miembros
5.
Curr Biol ; 34(3): 461-472.e7, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183987

RESUMEN

The origin of novel traits, those that are not direct modifications of a pre-existing ancestral structure, remains a fundamental problem in evolutionary biology. For example, little is known about the evolutionary and developmental origins of the novel avian vocal organ, the syrinx. Located at the tracheobronchial junction, the syrinx is responsible for avian vocalization, but it is unclear whether avian vocal folds are homologous to the laryngeal vocal folds in other tetrapods or convergently evolved. Here, we identify a core developmental program involved in avian vocal fold formation and infer the morphology of the syrinx of the ancestor of modern birds. We find that this ancestral syrinx had paired sound sources induced by a conserved developmental pathway and show that shifts in these signals correlate with syringeal diversification. We show that, despite being derived from different developmental tissues, vocal folds in the syrinx and larynx have similar tissue composition and are established through a strikingly similar developmental program, indicating that co-option of an ancestral developmental program facilitated the origin of vocal folds in the avian syrinx.


Asunto(s)
Laringe , Pliegues Vocales , Animales , Pliegues Vocales/anatomía & histología , Laringe/anatomía & histología , Aves/anatomía & histología , Tráquea/anatomía & histología , Sonido , Vocalización Animal
6.
BMC Ecol Evol ; 23(1): 41, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626324

RESUMEN

BACKGROUND: The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations. RESULTS: To investigate these traits, we created a novel feeding behavior assay wherein bite impressions could be obtained. We determined that fish with an underbite leave larger bite impressions with an increase in the number of tooth marks. Capitalizing on the ability to produce hybrids from surface and cavefish crosses, we investigated genes underlying these segregating orofacial traits by performing Quantitative Trait Loci (QTL) analysis with F2 hybrids. We discovered significant QTL for bite (underbite vs. overbite) that mapped to a single region of the Astyanax genome. Within this genomic region, multiple genes exhibit coding region mutations, some with known roles in bone development. Further, we determined that there is evidence that this genomic region is under natural selection. CONCLUSIONS: This work highlights cavefish as a valuable genetic model for orofacial patterning and will provide insight into the genetic regulators of jaw and tooth development.


Asunto(s)
Maloclusión de Angle Clase III , Animales , Peces , Mapeo Cromosómico , Cráneo , Sitios de Carácter Cuantitativo/genética
7.
Front Cell Dev Biol ; 11: 1135519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200627

RESUMEN

The term heterochrony was coined to describe changes in the timing of developmental processes relative to an ancestral state. Limb development is a well-suited system to address the contribution of heterochrony to morphological evolution. We illustrate how timing mechanisms have been used to establish the correct pattern of the limb and provide cases where natural variations in timing have led to changes in limb morphology.

8.
Proc Natl Acad Sci U S A ; 119(17): e2117938119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452314

RESUMEN

Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer's disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.


Asunto(s)
Microscopía Óptica no Lineal , Espectrometría Raman , Metabolismo de los Lípidos , Lípidos , Microscopía/métodos , Proteínas , Espectrometría Raman/métodos
9.
BMC Ecol Evol ; 21(1): 94, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020589

RESUMEN

BACKGROUND: Despite a longstanding interest in understanding how animals adapt to environments with limited nutrients, we have incomplete knowledge of the genetic basis of metabolic evolution. The Mexican tetra, Astyanax mexicanus, is a species of fish that consists of two morphotypes; eyeless cavefish that have adapted to a low-nutrient cave environment, and ancestral river-dwelling surface fish with abundant access to nutrients. Cavefish have evolved altered blood sugar regulation, starvation tolerance, increased fat accumulation, and superior body condition. To investigate the genetic basis of cavefish metabolic evolution we carried out a quantitative trait loci (QTL) analysis in surface/cave F2 hybrids. We genetically mapped seven metabolism-associated traits in hybrids that were challenged with a nutrient restricted diet. RESULTS: We found that female F2 hybrids are bigger than males and have a longer hindgut, bigger liver, and heavier gonad, even after correcting for fish size. Although there is no difference between male and female blood sugar level, we found that high blood sugar is associated with weight gain in females and lower body weight and fat level in males. We identified a significant QTL associated with 24-h-fasting blood glucose level with the same effect in males and females. Differently, we identified sex-independent and sex-dependent QTL associated with fish length, body condition, liver size, hindgut length, and gonad weight. We found that some of the genes within the metabolism QTL display evidence of non-neutral evolution and are likely to be under selection. Furthermore, we report predicted nonsynonymous changes to the cavefish coding sequence of these genes. CONCLUSIONS: Our study reveals previously unappreciated genomic regions associated with blood glucose regulation, body condition, gonad size, and internal organ morphology. In addition, we find an interaction between sex and metabolism-related traits in A. mexicanus. We reveal coding changes in genes that are likely under selection in the low-nutrient cave environment, leading to a better understanding of the genetic basis of metabolic evolution.


Asunto(s)
Characidae , Sitios de Carácter Cuantitativo , Animales , Evolución Biológica , Characidae/genética , Mapeo Cromosómico , Femenino , Masculino , México , Sitios de Carácter Cuantitativo/genética
10.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664263

RESUMEN

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Asunto(s)
Adaptación Fisiológica/genética , Characidae/embriología , Characidae/genética , Ojo/embriología , Herencia Multifactorial/genética , Animales , Evolución Biológica , Cuevas , Mapeo Cromosómico , Evolución Molecular , Edición Génica , Genoma/genética , Proteínas de Homeodominio/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Sitios de Carácter Cuantitativo/genética
11.
Dev Dyn ; 250(9): 1264-1279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33522040

RESUMEN

Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros , Animales , Evolución Biológica , Extremidades , Esbozos de los Miembros/metabolismo , Mesodermo/metabolismo , Vertebrados
12.
Nature ; 588(7836): E1, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33188369

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
J Exp Zool B Mol Dev Evol ; 334(7-8): 405-422, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32488995

RESUMEN

Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology.


Asunto(s)
Carotenoides/metabolismo , Characidae/genética , Animales , Evolución Biológica , Carotenoides/análisis , Cuevas , Characidae/anatomía & histología , Characidae/metabolismo , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Ojo/anatomía & histología , Femenino , Grasa Intraabdominal/química , Masculino , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma
14.
Development ; 147(12)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32467241

RESUMEN

Tendons and ligaments are crucial components of the musculoskeletal system, yet the pathways specifying these fates remain poorly defined. Through a screen of known bioactive chemicals in zebrafish, we identified a new pathway regulating tendon cell induction. We established that statin, through inhibition of the mevalonate pathway, causes an expansion of the tendon progenitor population. Co-expression and live imaging studies indicate that the expansion does not involve an increase in cell proliferation, but rather results from re-specification of cells from the neural crest-derived sox9a+/sox10+ skeletal lineage. The effect on tendon cell expansion is specific to the geranylgeranylation branch of the mevalonate pathway and is mediated by inhibition of Rac activity. This work establishes a novel role for the mevalonate pathway and Rac activity in regulating specification of the tendon lineage.


Asunto(s)
Ácido Mevalónico/metabolismo , Tendones/metabolismo , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Atorvastatina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Morfolinos/metabolismo , Cresta Neural/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Tendones/citología , Tendones/patología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/metabolismo
16.
Curr Biol ; 29(21): 3681-3691.e5, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31668620

RESUMEN

Powered flight was fundamental to the establishment and radiation of birds. However, flight has been lost multiple times throughout avian evolution. Convergent losses of flight within the ratites (flightless paleognaths, including the emu and ostrich) often coincide with reduced wings. Although there is a wealth of anatomical knowledge for several ratites, the genetic mechanisms causing these changes remain debated. Here, we use a multidisciplinary approach employing embryological, genetic, and genomic techniques to interrogate the mechanisms underlying forelimb heterochrony in emu embryos. We show that the initiation of limb formation, an epithelial to mesenchymal transition (EMT) in the lateral plate mesoderm (LPM) and myoblast migration into the LPM, occur at equivalent stages in the emu and chick. However, the emu forelimb fails to subsequently proliferate. The unique emu forelimb expression of Nkx2.5, previously associated with diminished wing development, initiates after this stage (concomitant with myoblast migration into the LPM) and is therefore unlikely to cause this developmental delay. In contrast, RNA sequencing of limb tissue reveals significantly lower Fgf10 expression in the emu forelimb. Artificially increasing Fgf10 expression in the emu LPM induces ectodermal Fgf8 expression and a limb bud. Analyzing open chromatin reveals differentially active regulatory elements near Fgf10 and Sall-1 in the emu wing, and the Sall-1 enhancer activity is dependent on a likely Fgf-mediated Ets transcription factor-binding site. Taken together, our results suggest that regulatory changes result in lower expression of Fgf10 and a concomitant failure to express genes required for limb proliferation in the early emu wing bud.


Asunto(s)
Proteínas Aviares/genética , Dromaiidae/genética , Transición Epitelial-Mesenquimal/genética , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Alas de Animales/embriología , Animales , Proteínas Aviares/metabolismo , Dromaiidae/embriología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Esbozos de los Miembros/embriología , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 116(43): 21592-21601, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591237

RESUMEN

All cells, including nonexcitable cells, maintain a discrete transmembrane potential (Vmem), and have the capacity to modulate Vmem and respond to their own and neighbors' changes in Vmem Spatiotemporal variations have been described in developing embryonic tissues and in some cases have been implicated in influencing developmental processes. Yet, how such changes in Vmem are converted into intracellular inputs that in turn regulate developmental gene expression and coordinate patterned tissue formation, has remained elusive. Here we document that the Vmem of limb mesenchyme switches from a hyperpolarized to depolarized state during early chondrocyte differentiation. This change in Vmem increases intracellular Ca2+ signaling through Ca2+ influx, via CaV1.2, 1 of L-type voltage-gated Ca2+ channels (VGCCs). We find that CaV1.2 activity is essential for chondrogenesis in the developing limbs. Pharmacological inhibition by an L-type VGCC specific blocker, or limb-specific deletion of CaV1.2, down-regulates expression of genes essential for chondrocyte differentiation, including Sox9, Col2a1, and Agc1, and thus disturbs proper cartilage formation. The Ca2+-dependent transcription factor NFATc1, which is a known major transducer of intracellular Ca2+ signaling, partly rescues Sox9 expression. These data reveal instructive roles of CaV1.2 in limb development, and more generally expand our understanding of how modulation of membrane potential is used as a mechanism of developmental regulation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cartílago/embriología , Condrogénesis/fisiología , Extremidades/embriología , Potenciales de la Membrana/fisiología , Agrecanos/metabolismo , Animales , Embrión de Pollo , Pollos , Colágeno Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción SOX9/metabolismo
18.
Cell ; 179(1): 90-105.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539501

RESUMEN

The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Mucosa Intestinal/crecimiento & desarrollo , Desarrollo de Músculos/genética , Músculo Liso/crecimiento & desarrollo , Miocitos del Músculo Liso/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Embrión de Pollo , Embrión de Mamíferos , Femenino , Proteínas Hedgehog/metabolismo , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Transducción de Señal/fisiología
19.
Curr Biol ; 29(2): R52-R54, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668947

RESUMEN

Hox genes are known to determine vertebral identity along with being required for normal limb patterning. A new study now finds that differential expression timing of Hox genes in the lateral plate mesoderm determines limb placement as well.


Asunto(s)
Gastrulación , Genes Homeobox , Animales , Tipificación del Cuerpo , Biología Evolutiva , Miembro Anterior , Regulación del Desarrollo de la Expresión Génica , Mesodermo
20.
Nature ; 565(7740): 480-484, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651642

RESUMEN

The embryonic gut tube is a cylindrical structure from which the respiratory and gastrointestinal tracts develop1. Although the early emergence of the endoderm as an epithelial sheet2,3 and later morphogenesis of the definitive digestive and respiratory organs4-6 have been investigated, the intervening process of gut tube formation remains relatively understudied7,8. Here we investigate the molecular control of macroscopic forces underlying early morphogenesis of the gut tube in the chick embryo. The gut tube has been described as forming from two endodermal invaginations-the anterior intestinal portal (AIP) towards the rostral end of the embryo and the caudal intestinal portal (CIP) at the caudal end-that migrate towards one another, internalizing the endoderm until they meet at the yolk stalk (umbilicus in mammals)1,6. Migration of the AIP to form foregut has been descriptively characterized8,9, but the hindgut is likely to form by a distinct mechanism that has not been fully explained10. We find that the hindgut is formed by collective cell movements through a stationary CIP, rather than by movement of the CIP itself. Further, combining in vivo imaging, biophysics and mathematical modelling with molecular and embryological approaches, we identify a contractile force gradient that drives cell movements in the hindgut-forming endoderm, enabling tissue-scale posterior extension of the forming hindgut tube. The force gradient, in turn, is established in response to a morphogenic gradient of fibroblast growth factor signalling. As a result, we propose that an important positive feedback arises, whereby contracting cells draw passive cells from low to high fibroblast growth factor levels, recruiting them to contract and pull more cells into the elongating hindgut. In addition to providing insight into the early gut development, these findings illustrate how large-scale tissue level forces can be traced to developmental signals during vertebrate morphogenesis.


Asunto(s)
Tracto Gastrointestinal/embriología , Morfogénesis , Animales , Tipificación del Cuerpo , Movimiento Celular , Embrión de Pollo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...