Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Math Biosci ; 376: 109263, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089572

RESUMEN

Schistosomiasis, a freshwater-borne neglected tropical disease, disproportionately affects impoverished communities mainly in the tropical regions. Transmission involves humans and intermediate host (IH) snails. This manuscript introduces a mathematical model to probe schistosomiasis dynamics and the role of non-host snail competitors and predators as biological control agents for IH snails. The numerical analyses include investigations into steady-state conditions and reproduction numbers associated with uncontrolled scenarios, as well as scenarios involving non-host snail competitors and/or predators. Sensitivity analysis reveals that increasing snail mortality rates is a key to reducing the IH snail population and control of the transmission. Results show that specific snail competitors and/or predators with strong competition/predation abilities reduce IH snails and the subsequent infectious cercaria populations, reduce the transmission, and possibly eradicate the disease, while those with weaker abilities allow disease persistence. Hence our findings advocate for the effectiveness of snail competitors with suitable competitive pressures and/or predators with appropriate predatory abilities as nature-based solutions for combating schistosomiasis, all while preserving IH snail biodiversity. However, if these strategies are implemented at insignificant levels, IH snails can dominate, and disease persistence may pose challenges. Thus, experimental screening of potential (native) snail competitors and/or predators is crucial to assess the likely behavior of biological agents and determine the optimal biological control measures for IH snails.


Asunto(s)
Modelos Biológicos , Esquistosomiasis , Caracoles , Animales , Esquistosomiasis/transmisión , Esquistosomiasis/prevención & control , Humanos , Caracoles/parasitología , Conducta Predatoria , Conceptos Matemáticos
2.
Sci Rep ; 14(1): 4274, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383705

RESUMEN

Schistosomiasis, a prevalent water-borne disease second only to malaria, significantly impacts impoverished rural communities, primarily in Sub-Saharan Africa where over 90% of the severely affected population resides. The disease, majorly caused by Schistosoma mansoni and S. haematobium parasites, relies on freshwater snails, specifically Biomphalaria and Bulinus species, as crucial intermediate host (IH) snails. Targeted snail control is advisable, however, there is still limited knowledge about the community structure of the two genera especially in East Africa. Utilizing a machine learning approach, we employed random forest to identify key features influencing the distribution of both IH snails in this region. Our results reveal geography and climate as primary factors for Biomphalaria, while Bulinus occurrence is additionally influenced by soil clay content and nitrogen concentration. Favorable climate conditions indicate a high prevalence of IHs in East Africa, while the intricate connection with geography might signify either dispersal limitations or environmental filtering. Predicted probabilities demonstrate non-linear patterns, with Bulinus being more likely to occur than Biomphalaria in the region. This study provides foundational framework insights for targeted schistosomiasis prevention and control strategies in the region, assisting health workers and policymakers in their efforts.


Asunto(s)
Biomphalaria , Esquistosomiasis , Humanos , Animales , Esquistosomiasis/epidemiología , Biomphalaria/parasitología , Caracoles , Bulinus/parasitología , África Oriental/epidemiología
3.
Infect Dis Model ; 9(1): 158-176, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268699

RESUMEN

Schistosomiasis, a neglected tropical disease caused by parasitic worms, poses a major public health challenge in economically disadvantaged regions, especially in Sub-Saharan Africa. Climate factors, such as temperature and rainfall patterns, play a crucial role in the transmission dynamics of the disease. This study presents a deterministic model that aims to evaluate the temporal and seasonal transmission dynamics of schistosomiasis by examining the influence of temperature and rainfall over time. Equilibrium states are examined to ascertain their existence and stability employing the center manifold theory, while the basic reproduction number is calculated using the next-generation technique. To validate the model's applicability, demographic and climatological data from Uganda, Kenya, and Tanzania, which are endemic East African countries situated in the tropical region, are utilized as a case study region. The findings of this study provide evidence that the transmission of schistosomiasis in human populations is significantly influenced by seasonal and monthly variations, with incidence rates varying across countries depending on the frequency of temperature and rainfall. Consequently, the region is marked by both schistosomiasis emergencies and re-emergences. Specifically, it is observed that monthly mean temperatures within the range of 22-27 °C create favorable conditions for the development of schistosomiasis and have a positive impact on the reproduction numbers. On the other hand, monthly maximum temperatures ranging from 27 to 33 °C have an adverse effect on transmission. Furthermore, through sensitivity analysis, it is projected that by the year 2050, factors such as the recruitment rate of snails, the presence of parasite egg-containing stools, and the rate of miracidia shedding per parasite egg will contribute significantly to the occurrence and control of schistosomiasis infections. This study highlights the significant influence of seasonal and monthly variations, driven by temperature and rainfall patterns, on the transmission dynamics of schistosomiasis. These findings underscore the importance of considering climate factors in the control and prevention strategies of schistosomiasis. Additionally, the projected impact of various factors on schistosomiasis infections by 2050 emphasizes the need for proactive measures to mitigate the disease's impact on vulnerable populations. Overall, this research provides valuable insights to anticipate future challenges and devise adaptive measures to address schistosomiasis transmission patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...