Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21842, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318558

RESUMEN

Fluorescent ligands are versatile tools for the study of G protein-coupled receptors. Depending on the fluorophore, they can be used for a range of different applications, including fluorescence microscopy and bioluminescence or fluorescence resonance energy transfer (BRET or FRET) assays. Starting from phenylpiperazines and indanylamines, privileged scaffolds for dopamine D2-like receptors, we developed dansyl-labeled fluorescent ligands that are well accommodated in the binding pockets of D2 and D3 receptors. These receptors are the target proteins for the therapy for several neurologic and psychiatric disorders, including Parkinson's disease and schizophrenia. The dansyl-labeled ligands exhibit binding affinities up to 0.44 nM and 0.29 nM at D2R and D3R, respectively. When the dansyl label was exchanged for sterically more demanding xanthene or cyanine dyes, fluorescent ligands 10a-c retained excellent binding properties and, as expected from their indanylamine pharmacophore, acted as agonists at D2R. While the Cy3B-labeled ligand 10b was used to visualize D2R and D3R on the surface of living cells by total internal reflection microscopy, ligand 10a comprising a rhodamine label showed excellent properties in a NanoBRET binding assay at D3R.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
2.
Sci Rep ; 7(1): 10894, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883522

RESUMEN

G protein-coupled receptors (GPCRs), including the dopamine receptors, represent a group of important pharmacological targets. Upon agonist binding, GPCRs frequently undergo internalization, a process that is known to attenuate functional responses upon prolonged exposure to agonists. In this study, internalization was visualized by means of total internal reflection fluorescence (TIRF) microscopy at a level of discrete single events near the plasma membrane with high spatial resolution. A novel method has been developed to determine the relative extent of internalized fluorescent receptor-ligand complexes by comparative fluorescence quantification in living CHO cells. The procedure entails treatment with the reducing agent sodium borohydride, which converts cyanine-based fluorescent ligands on the membrane surface to a long-lived reduced form. Because the highly polar reducing agent is not able to pass the cell membrane, the fluorescent receptor-ligand complexes located in internalized compartments remain fluorescent under TIRF illumination. We applied the method to investigate differences of the short (D2S) and the long (D2L) isoforms of dopamine D2 receptors in their ability to undergo agonist-induced internalization.


Asunto(s)
Dopaminérgicos/metabolismo , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Receptores Dopaminérgicos/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Cricetulus , Análisis Espacial
3.
Sci Rep ; 6: 33233, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27615810

RESUMEN

G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.


Asunto(s)
Receptores de Dopamina D2/metabolismo , Espiperona/metabolismo , Animales , Células CHO , Cricetulus , Antagonistas de Dopamina/metabolismo , Humanos , Cinética , Ligandos , Microscopía Fluorescente , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Análisis de la Célula Individual
4.
J Fluoresc ; 23(3): 487-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23397486

RESUMEN

Concurrent imaging of spectrally distinct fluorescence probes has become an important method for live-cell microscopy experiments in many biological disciplines. The technique enables the identification of a multitude of causal relationships. However, interactions between fluorescent dyes beyond an obvious overlap of their fluorescent spectra are often neglected. Here we present the effects of the well-established fluorescent dyes FM®2-10 or FM®1-43 on the recently introduced pH-dependent probe CypHer™5E. Spectrophotometry as well as live-cell fluorescence microscopy revealed that both FM dyes are effective quenchers of CypHer™5E. Control experiments indicated that this effect is reversible and not due to bleaching. We conclude that, in general, parallel measurements of both dyes are possible, with low FM dye concentrations. Nevertheless, our results implicate that special care has to be taken in such dual colour experiments especially when analysing dynamic CypHer™5E signals in live-cell microscopy.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , Compuestos de Piridinio/química , Compuestos de Amonio Cuaternario/química , Animales , Hipocampo/citología , Concentración de Iones de Hidrógeno , Microscopía Fluorescente , Imagen Molecular , Neuronas/citología , Ratas , Ratas Wistar , Espectrometría de Fluorescencia , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...