Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nucleic Acids Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661190

RESUMEN

The sense of smell is a biological process involving volatile molecules that interact with proteins called olfactory receptors to transmit a nervous message that allows the recognition of a perceived odor. However, the relationships between odorant molecules, olfactory receptors and odors (O3) are far from being well understood due to the combinatorial olfactory codes and large family of olfactory receptors. This is the reason why, based on 5802 odorant molecules and their annotations to 863 olfactory receptors (human) and 7029 odors and flavors annotations, a web server called Pred-O3 has been designed to provide insights into olfaction. Predictive models based on Artificial Intelligence have been developed allowing to suggest olfactory receptors and odors associated with a new molecule. In addition, based on the encoding of the odorant molecule's structure, physicochemical features related to odors and/or olfactory receptors are proposed. Finally, based on the structural models of the 98 olfactory receptors a systematic docking protocol can be applied and suggest if a molecule can bind or not to an olfactory receptor. Therefore, Pred-O3 is well suited to aid in the design of new odorant molecules and assist in fragrance research and sensory neuroscience. Pred-O3 is accessible at ' https://odor.rpbs.univ-paris-diderot.fr/'.

2.
Front Toxicol ; 6: 1285768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523647

RESUMEN

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

3.
Environ Health Perspect ; 131(11): 117003, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909725

RESUMEN

BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100µM. None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (Ntotal=144). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.


Asunto(s)
Contaminantes Ambientales , Trastornos Migrañosos , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Canal Catiónico TRPA1/fisiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Xenobióticos , Canales de Potencial de Receptor Transitorio/metabolismo , Trastornos Migrañosos/metabolismo , Dolor , Contaminantes Ambientales/toxicidad
5.
Chem Res Toxicol ; 36(9): 1456-1470, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37652439

RESUMEN

Drug-induced liver injury (DILI) is a significant concern in drug development, often leading to drug withdrawal. Although many studies aim to identify biomarkers and gene/pathway signatures related to liver toxicity and aim to predict DILI compounds, this remains a challenge in drug discovery. With a strong development of high-content screening/imaging (HCS/HCI) for phenotypic screening, we explored the morphological cell perturbations induced by DILI compounds. In the first step, cell morphological signatures were associated with two datasets of DILI chemicals (DILIRank and eTox). The mechanisms of action were then analyzed for chemicals having transcriptomics data and sharing similar morphological perturbations. Signaling pathways associated with liver toxicity (cell cycle, cell growth, apoptosis, ...) were then captured, and a hypothetical relation between cell morphological perturbations and gene deregulation was illustrated within our analysis. Finally, using the cell morphological signatures, machine learning approaches were developed to predict chemicals with a potential risk of DILI. Some models showed relevant performance with validation set balanced accuracies between 0.645 and 0.739. Overall, our findings demonstrate the utility of combining HCI with transcriptomics data to identify the morphological and gene expression signatures related to DILI chemicals. Moreover, our protocol could be extended to other toxicity end points, offering a promising avenue for comprehensive toxicity assessment in drug discovery.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Perfilación de la Expresión Génica , Ciclo Celular , Apoptosis , Proliferación Celular
6.
Front Pharmacol ; 14: 1225697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502213

RESUMEN

Introduction: Network-based methods are promising approaches in systems toxicology because they can be used to predict the effects of drugs and chemicals on health, to elucidate the mode of action of compounds, and to identify biomarkers of toxicity. Over the years, the network biology community has developed a wide range of methods, and users are faced with the task of choosing the most appropriate method for their own application. Furthermore, the advantages and limitations of each method are difficult to determine without a proper standard and comparative evaluation of their performance. This study aims to evaluate different network-based methods that can be used to gain biological insight into the mechanisms of drug toxicity, using valproic acid (VPA)-induced liver steatosis as a benchmark. Methods: We provide a comprehensive analysis of the results produced by each method and highlight the fact that the experimental design (how the method is applied) is relevant in addition to the method specifications. We also contribute with a systematic methodology to analyse the results of the methods individually and in a comparative manner. Results: Our results show that the evaluated tools differ in their performance against the benchmark and in their ability to provide novel insights into the mechanism of adverse effects of the drug. We also suggest that aggregation of the results provided by different methods provides a more confident set of candidate genes and processes to further the knowledge of the drug's mechanism of action. Discussion: By providing a detailed and systematic analysis of the results of different network-based tools, we aim to assist users in making informed decisions about the most appropriate method for systems toxicology applications.

7.
J Wound Care ; 32(5): 312-317, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094929

RESUMEN

Diabetic foot ulcers are one of the complications of diabetes. Malnutrition is one of the risk factors for wounds but, on the other hand, diabetic foot ulceration may promote malnutrition. In this single-centre retrospective study we evaluated the frequency of malnutrition at first admission and the severity of foot ulceration. We demonstrated that malnutrition at admission correlated with duration of hospitalisation and with death rate rather than with the risk of amputation. Our data challenged the concept that protein-energy deficiency may worsen the prognosis of diabetic foot ulcers. Nevertheless, it is still important to screen nutritional status at baseline and during the follow-up in order to start specific nutritional support therapy as soon as possible in order to reduce morbidity/mortality related to malnutrition.


Asunto(s)
Pie Diabético , Úlcera del Pie , Desnutrición , Humanos , Cicatrización de Heridas , Estado Nutricional , Pronóstico , Estudios Retrospectivos , Amputación Quirúrgica , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios de Cohortes
8.
Toxicol Appl Pharmacol ; 461: 116407, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736439

RESUMEN

The progress in image-based high-content screening technology has facilitated high-throughput phenotypic profiling notably the quantification of cell morphology perturbation by chemicals. However, understanding the mechanism of action of a chemical and linking it to cell morphology and phenotypes remains a challenge in drug discovery. In this study, we intended to integrate molecules that induced transcriptomic perturbations and cellular morphological changes into a biological network in order to assess chemical-phenotypic relationships in humans. Such a network was enriched with existing disease information to suggest molecular and cellular profiles leading to phenotypes. Two datasets were used for this study. Firstly, we used the "Cell Painting morphological profiling assay" dataset, composed of 30,000 compounds tested on human osteosarcoma cells (named U2OS). Secondly, we used the "L1000 mRNA profiling assay" dataset, a collection of transcriptional expression data from cultured human cells treated with approximately 20,000 bioactive small molecules from the Library of Integrated Network-based Cellular Signatures (LINCS). Furthermore, pathways, gene ontology terms and disease enrichments were performed on the transcriptomics data. Overall, our study makes it possible to develop a biological network combining chemical-gene-pathway-morphological perturbation and disease relationships. It contains an ensemble of 9989 chemicals, 732 significant morphological features and 12,328 genes. Through diverse examples, we demonstrated that some drugs shared similar genes, pathways and morphological profiles that, taken together, could help in deciphering chemical-phenotype observations.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Fenotipo
9.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385105

RESUMEN

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Asunto(s)
Proteína de Unión a CREB , Proteínas de Choque Térmico , Trastornos del Neurodesarrollo , Síndrome de Rubinstein-Taybi , Factores de Transcripción , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
10.
Sci Rep ; 12(1): 18817, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335231

RESUMEN

Deciphering the relationship between molecules, olfactory receptors (ORs) and corresponding odors remains a challenging task. It requires a comprehensive identification of ORs responding to a given odorant. With the recent advances in artificial intelligence and the growing research in decoding the human olfactory perception from chemical features of odorant molecules, the applications of advanced machine learning have been revived. In this study, Convolutional Neural Network (CNN) and Graphical Convolutional Network (GCN) models have been developed on odorant molecules-odors and odorant molecules-olfactory receptors using a large set of 5955 molecules, 160 odors and 106 olfactory receptors. The performance of such models is promising with a Precision/Recall Area Under Curve of 0.66 for the odorant-odor and 0.91 for the odorant-olfactory receptor GCN models respectively. Furthermore, based on the correspondence of odors and ORs associated for a set of 389 compounds, an odor-olfactory receptor pairwise score was computed for each odor-OR combination allowing to suggest a combinatorial relationship between olfactory receptors and odors. Overall, this analysis demonstrate that artificial intelligence may pave the way in the identification of the smell perception and the full repertoire of receptors for a given odorant molecule.


Asunto(s)
Percepción Olfatoria , Neuronas Receptoras Olfatorias , Receptores Odorantes , Humanos , Inteligencia Artificial , Odorantes , Olfato
11.
Methods Mol Biol ; 2425: 133-146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35188631

RESUMEN

Assessing the drug safety at an early stage of a drug discovery program is a critical issue. With the recent advances in molecular biology and genomic, massive amounts of generated and accumulated data by advanced experimental technologies such as RNA sequencing or proteomics start to be at the disposal of the scientific community. Innovative and adequate bioinformatic methods, tools, and protocols are required to analyze properly these diverse and extensive data sources with the aim to identify key features that are related to toxicity observations. Furthermore, the assessment of drug safety can be performed across multiple scales of complexity from molecular, cellular to phenotypic levels; therefore, the application of network science contributes to a better interpretation of the drug's exposure effect on human health. Here, we review databases containing toxicogenomics and chemical-phenotype information, as well as appropriated bioinformatics approaches that are currently used to analyze such data. Extension to others methods such as dose-responses, time-dependent processes, and text mining is also presented giving an overview of suitable tools available for a best practice of drug safety analysis.


Asunto(s)
Preparaciones Farmacéuticas , Toxicología , Biología Computacional , Genómica , Humanos , Proteómica , Toxicogenética , Toxicología/métodos
12.
Toxicol In Vitro ; 79: 105269, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34757180

RESUMEN

Read-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies. Three out of them induced lipid accumulation or hypertrophy in preclinical studies with repeated exposure, which leads to the read-across hypothesis that the analogues can potentially induce hepatic steatosis. To confirm the selection of analogues, the expression patterns of the induced differentially expressed genes (DEGs) were analysed in a human liver model. With increasing dose, the expression pattern within the tested analogues got more similar, which serves as a first indication of a common mode of action and suggests differences in the potency of the analogues. Hepatic steatosis is a well-known adverse outcome, for which over 55 adverse outcome pathways have been identified. The resulting adverse outcome pathway (AOP) network, comprised a total 43 MIEs/KEs and enabled the design of an in vitro testing battery. From the AOP network, ten MIEs, early and late KEs were tested to systematically investigate a common mode of action among the grouped compounds. The targeted testing of AOP specific MIE/KEs shows that biological activity in the category decreases with side chain length. A similar trend was evident in measuring liver alterations in zebra fish embryos. However, activation of single MIEs or early KEs at in vivo relevant doses did not necessarily progress to the late KE "lipid accumulation". KEs not related to the read-across hypothesis, testing for example general mitochondrial stress responses in liver cells, showed no trend or biological similarity. Testing scope is a key issue in the design of in vitro test batteries. The Dempster-Shafer decision theory predicted those analogues with in vivo reference data correctly using one human liver model or the CALUX reporter assays. The case study shows that the read-across hypothesis is the key element to designing the testing strategy. In the case of a good mechanistic understanding, an AOP facilitates the selection of reliable human in vitro models to demonstrate a common mode of action. Testing DEGs, MIEs and early KEs served to show biological similarity, whereas the late KEs become important for confirmation, as progression from MIEs to AO is not always guaranteed.


Asunto(s)
Rutas de Resultados Adversos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidad , Animales , Simulación por Computador , Hígado Graso/inducido químicamente , Perfilación de la Expresión Génica , Humanos , Pez Cebra
13.
J Cheminform ; 13(1): 91, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819133

RESUMEN

With the development of advanced technologies in cell-based phenotypic screening, phenotypic drug discovery (PDD) strategies have re-emerged as promising approaches in the identification and development of novel and safe drugs. However, phenotypic screening does not rely on knowledge of specific drug targets and needs to be combined with chemical biology approaches to identify therapeutic targets and mechanisms of actions induced by drugs and associated with an observable phenotype. In this study, we developed a system pharmacology network integrating drug-target-pathway-disease relationships as well as morphological profile from an existing high content imaging-based high-throughput phenotypic profiling assay known as "Cell Painting". Furthermore, from this network, a chemogenomic library of 5000 small molecules that represent a large and diverse panel of drug targets involved in diverse biological effects and diseases has been developed. Such a platform and a chemogenomic library could assist in the target identification and mechanism deconvolution of some phenotypic assays. The usefulness of the platform is illustrated through examples.

14.
Viruses ; 13(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34372575

RESUMEN

GS-441524 is an adenosine analog and the parent nucleoside of the prodrug remdesivir, which has received emergency approval for treatment of COVID-19. Recently, GS-441524 has been proposed to be effective in the treatment of COVID-19, perhaps even being superior to remdesivir for treatment of this disease. Evaluation of the clinical effectiveness of GS-441524 requires understanding of its uptake and intracellular conversion to GS-441524 triphosphate, the active antiviral substance. We here discuss the potential impact of these pharmacokinetic steps of GS-441524 on the formation of its active antiviral substance and effectiveness for treatment of COVID-19. Available protein expression data suggest that several adenosine transporters are expressed at only low levels in the epithelial cells lining the alveoli in the lungs, i.e., the alveolar cells or pneumocytes from healthy lungs. This may limit uptake of GS-441524. Importantly, cellular uptake of GS-441524 may be reduced during hypoxia and inflammation due to decreased expression of adenosine transporters. Similarly, hypoxia and inflammation may lead to reduced expression of adenosine kinase, which is believed to convert GS-441524 to GS-441524 monophosphate, the perceived rate-limiting step in the intracellular formation of GS-441524 triphosphate. Moreover, increases in extracellular and intracellular levels of adenosine, which may occur during critical illnesses, has the potential to competitively decrease cellular uptake and phosphorylation of GS-441524. Taken together, tissue hypoxia and severe inflammation in COVID-19 may lead to reduced uptake and phosphorylation of GS-441524 with lowered therapeutic effectiveness as a potential outcome. Hypoxia may be particularly critical to the ability of GS-441524 to eliminate SARS-CoV-2 from tissues with low basal expression of adenosine transporters, such as alveolar cells. This knowledge may also be relevant to treatments with other antiviral adenosine analogs and anticancer adenosine analogs as well.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Adenosina/farmacocinética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Humanos , Fosforilación , Profármacos
15.
PLoS One ; 16(5): e0252486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048487

RESUMEN

This study aims to highlight the relationships between the structure of smell compounds and their odors. For this purpose, heterogeneous data sources were screened, and 6038 odorant compounds and their known associated odors (162 odor notes) were compiled, each individual molecule being represented with a set of 1024 structural fingerprint. Several dimensional reduction techniques (PCA, MDS, t-SNE and UMAP) with two clustering methods (k-means and agglomerative hierarchical clustering AHC) were assessed based on the calculated fingerprints. The combination of UMAP with k-means and AHC methods allowed to obtain a good representativeness of odors by clusters, as well as the best visualization of the proximity of odorants on the basis of their molecular structures. The presence or absence of molecular substructures has been calculated on odorant in order to link chemical groups to odors. The results of this analysis bring out some associations for both the odor notes and the chemical structures of the molecules such as "woody" and "spicy" notes with allylic and bicyclic structures, "balsamic" notes with unsaturated rings, both "sulfurous" and "citrus" with aldehydes, alcohols, carboxylic acids, amines and sulfur compounds, and "oily", "fatty" and "fruity" characterized by esters and with long carbon chains. Overall, the use of UMAP associated to clustering is a promising method to suggest hypotheses on the odorant structure-odor relationships.


Asunto(s)
Odorantes/análisis , Olfato , Análisis por Conglomerados , Conformación Molecular , Análisis de Escalamiento Multidimensional , Análisis de Componente Principal
16.
Front Public Health ; 9: 763962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976924

RESUMEN

Background: The chemical part of the exposome, including drugs, may explain the increase of health effects with outcomes such as infertility, allergies, metabolic disorders, which cannot be only explained by the genetic changes. To better understand how drug exposure can impact human health, the concepts of adverse outcome pathways (AOPs) and AOP networks (AONs), which are representations of causally linked events at different biological levels leading to adverse health, could be used for drug safety assessment. Methods: To explore the action of drugs across multiple scales of the biological organization, we investigated the use of a network-based approach in the known AOP space. Considering the drugs and their associations to biological events, such as molecular initiating event and key event, a bipartite network was developed. This bipartite network was projected into a monopartite network capturing the event-event linkages. Nevertheless, such transformation of a bipartite network to a monopartite network had a huge risk of information loss. A way to solve this problem is to quantify the network reduction. We calculated two scoring systems, one measuring the uncertainty and a second one describing the loss of coverage on the developed event-event network to better investigate events from AOPs linked to drugs. Results: This AON analysis allowed us to identify biological events that are highly connected to drugs, such as events involving nuclear receptors (ER, AR, and PXR/SXR). Furthermore, we observed that the number of events involved in a linkage pattern with drugs is a key factor that influences information loss during monopartite network projection. Such scores have the potential to quantify the uncertainty of an event involved in an AON, and could be valuable for the weight of evidence assessment of AOPs. A case study related to infertility, more specifically to "decrease, male agenital distance" is presented. Conclusion: This study highlights that computational approaches based on network science may help to understand the complexity of drug health effects, with the aim to support drug safety assessment.


Asunto(s)
Rutas de Resultados Adversos , Exposoma , Infertilidad , Humanos , Masculino
18.
Front Mol Biosci ; 7: 603983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330630

RESUMEN

The multi domain ceramide transfer protein (CERT) which contains the domains START and PH, is a protein that allows the transport of ceramide from the endoplasmic reticulum to the Golgi and so it plays a major role in sphingolipid metabolism. Recently, the crystal structure of the PH-START complex has been released, suggesting an inhibitory action of START to the binding of the PH domain to the Golgi apparatus and thus limiting the CERT activity. Our study presents a combination of docking and molecular dynamic simulations of N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPA) analogs and limonoids compounds known to inhibit CERT. Through our computational study, we compared the binding affinity of 14 ligands at both domains (START and PH) and also at the START-PH interface, including several mutations known to play a role in the CERT's activity. At the difference of HPA compounds, limonoids have a stronger binding affinity for the START-PH interface. Furthermore, 2 inhibitors (HPA-12 and isogedunin) were investigated through molecular dynamic (MD) simulations. 50 ns of molecular dynamic simulations have displayed the stability of isogedunin as well as keys residues in the binding of this molecule at the interface of the PH-START complex. Therefore, this study suggests a novel inhibitory mechanism of CERT for limonoid compounds involving the stabilization of the START-PH interface. This could help to develop new and potentially more selective inhibitors of this transporter, which is a potent target in cancer therapy.

20.
Toxicol Appl Pharmacol ; 405: 115210, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32860831

RESUMEN

Biological systems are disturbed by several factors that are defined by the exposome. Environmental substances, including endocrine disruptors (EDs), represent the chemical exposome. These stressors may alter biological systems, that could lead to toxic health effects. Even if scientific evidence provide links between diverse environmental substances and disorders, innovative approaches, including alternative methods to animal testing, are still needed to address the complexity of the chemical mechanisms of action. Network science appears to be a valuable approach for helping to decipher a comprehensive assessment of the chemical exposome. A computational protein system-system association network (pS-SAN), based on various data sources such as chemical-protein interactions, chemical-system links, and protein-tissue associations was developed. The integrative systems toxicological model was applied to three EDs, to predict potential biological systems they may perturb. The results revealed that several systems may be disturbed by theses EDs, such as the kidney, liver and endocrine systems. The presented network-based approach highlights an opportunity to shift the paradigm of chemical risk assessment towards a better understanding of chemical toxicology mechanisms.


Asunto(s)
Biología Computacional/métodos , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Modelos Biológicos , Toxicología/métodos , Acetaminofén/toxicidad , Animales , Bases de Datos de Compuestos Químicos , Disruptores Endocrinos/química , Contaminantes Ambientales/química , Humanos , Dibenzodioxinas Policloradas/toxicidad , Medición de Riesgo , Ácido Valproico/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA