Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 21(1): 219-228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489481

RESUMEN

There are two types of creep constitutive equation, one with a steady-state term (steady-state type) and the other with no steady-state term (non-steady-state type). We applied the Bayesian inference framework in order to examine which type is supported by experimental creep curves for a Grade 91 (Gr.91) steel. The Bayesian free energy was significantly lower for the steady-state type under all the test conditions in the ranges of 50-90 MPa at 923 K, 90-160 MPa at 873 K and 170-240 MPa at 823 K, leading to the conclusion that the posterior probability was virtually 1.0. These findings mean that the experimental data supported the steady-state-type equation. The dependence of the evaluated steady-state creep rate on the applied stress indicates that there is a transition in the mechanism governing creep deformation around 120 MPa.

2.
Sci Rep ; 8(1): 7279, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740098

RESUMEN

The effect of mixed partial occupation of metal sites on the phase stability of the γ-Cr23-xFe x C6 (x = 0-3) carbides is explored as function of composition and temperature. Ab initio calculations combined with statistical thermodynamics approaches reveal that the site occupation of the carbides may be incorrectly predicted when only the commonly used approach of full sublattice occupation is considered. We found that the γ-M23C6 structure can be understood as a familiar sodium chloride structure with positively charged rhombic dodecahedron (M(4a) M12(48h)) and negatively charged cubo-octahedron (M8(32f) C6(24e)) super-ion clusters, together with interstitial metal atoms at the 8c sites. The stability of the partially occupied phase can be easily rationalized on the basis of a super-ion analysis of the carbide phase. This new understanding of γ-M23C6 carbides may facilitate further development of high-chromium heat-resistant steels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...