Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Orthop J Sports Med ; 12(3): 23259671241233014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510318

RESUMEN

Background: Soft tissue plays an important role in stabilizing the hinge point for osteotomy around the knee. However, insufficient data are available on the anatomic features of the soft tissue around the hinge position for lateral closing-wedge distal femoral osteotomy (LCWDFO). Purpose: To (1) anatomically analyze the soft tissue around the hinge position for LCWDFO, (2) histologically analyze the soft tissue based on the anatomic analysis results, and (3) radiologically define the appropriate hinge point to prevent unstable hinge fracture based on the results of the anatomic and histological analyses. Study Design: Descriptive laboratory study. Methods: In 20 cadaveric knees (age, 82.7 ± 7.8 years; range, 60-96 years), the soft tissue of the distal medial side of the femur was anatomically analyzed. The thicknesses of the periosteum and direct insertion of the adductor tendon (AT) were histologically examined and measured using an electron microscope. The thickness of the periosteum was visualized graphically, and the graph of the periosteum and radiograph of the knee were overlaid using image editing software. The appropriate hinge position was determined based on the periosteal thickness and attachment of the AT. Results: The mean thickness of the periosteum of the metaphysis was 352.7 ± 58.6 µm (range, 213.6-503.4 µm). The overlaid graph and radiograph revealed that the thickness of the periosteum changed at the part corresponding to the transition between the diaphyseal and metaphyseal ends of the femur. The mean width of the AT attached to the distal medial femur from the adductor tubercle toward the distal direction was 7.9 ± 1.3 mm (range, 6.3-9.7 mm). Conclusion: Results indicated that the periosteum and AT support the hinge for LCWDFO within the area surrounded by the apex of the adductor tubercle and the upper border of the posterior part of the lateral femoral condyle. Clinical Relevance: When the hinge point is located within the area surrounded by the apex of the adductor tubercle and the upper border of the posterior part of the lateral femoral condyle, these soft tissues work as stabilizers, and there is no risk of cutting into the joint space.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38334557

RESUMEN

Research in the field of high-intensity focused ultrasound (HIFU) for intracranial gene therapy has greatly progressed over the years. However, limitations of conventional HIFU still remain. That is, genes are required to cross the blood-brain barrier (BBB) in order to reach the neurological disordered lesion. In this study, we introduce a novel direct intracranial gene delivery method, bypassing the BBB using human serum albumin-based nanobubbles (NBs) injected through a less invasive intrathecal route via lumbar puncture, followed by intracranial irradiation with low-frequency ultrasound (LoFreqUS). Focusing on both plasmid DNA (pDNA) and messenger RNA (mRNA), our approach utilizes LoFreqUS for deeper tissue acoustic penetration and enhancing gene transfer efficiency. This drug delivery method could be dubbed as the "Spinal Back-Door Approach", an alternative to the "front door" BBB opening method. Experiments showed that NBs effectively responded to LoFreqUS, significantly improving gene transfer in vitro using U-87 MG cell lines. In vivo experiments in mice demonstrated significantly increased gene expression with pDNA; however, we were unable to obtain conclusive results using mRNA. This novel technique, combining albumin-based NBs and LoFreqUS offers a promising, efficient, targeted, and non-invasive solution for central nervous system gene therapy, potentially transforming the treatment landscape for neurological disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...