Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580167

RESUMEN

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Asunto(s)
Receptores Nicotínicos , Ratas , Animales , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Simulación del Acoplamiento Molecular , Ácido gamma-Aminobutírico
2.
Mar Drugs ; 22(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535451

RESUMEN

α-Conotoxins (α-CTxs) are structurally related peptides that antagonize nicotinic acetylcholine receptors (nAChRs), which may serve as new alternatives to opioid-based treatment for pain-related conditions. The non-natural amino acid analogues of α-CTxs have been demonstrated with improved potency compared to the native peptide. In this study, we chemically synthesized Dab/Dap-substituted analogues of α-CTx PeIA and evaluated their activity at heterologously expressed human α9α10 nAChRs. PeIA[S4Dap, S9Dap] had the most potent half-maximal inhibitory concentration (IC50) of 0.93 nM. Molecular dynamic simulations suggested that the side chain amino group of Dap4 formed additional hydrogen bonds with S168 and D169 of the receptor and Dap9 formed an extra hydrogen bond interaction with Q34, which is distinctive to PeIA. Overall, our findings provide new insights into further development of more potent analogues of α-CTxs, and PeIA[S4Dap, S9Dap] has potential as a drug candidate for the treatment of chronic neuropathic pain.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Humanos , Aminoácidos , Enlace de Hidrógeno , Simulación de Dinámica Molecular
3.
J Med Chem ; 67(2): 971-987, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38217860

RESUMEN

Pain severely affects the physical and mental health of patients. The need to develop nonopioid analgesic drugs to meet medical demands is urgent. In this study, we designed a truncated analogue of αO-conotoxin, named GeX-2, based on disulfide-bond deletion and sequence truncation. GeX-2 retained the potency of its parent peptide at the human α9α10 nAChR and exhibited potent inhibitory activity at CaV2.2 channels via activation of the GABAB receptor (GABABR). Importantly, GeX-2 significantly alleviated pain in the rat model of chronic constriction injury. The dual inhibition of GeX-2 at both α9α10 nAChRs and CaV2.2 channels is speculated to synergistically mediate the potent analgesic effects. Results from site-directed mutagenesis assay and computational modeling suggest that GeX-2 preferentially interacts with the α10(+)α10(-) binding site of α9α10 nAChR and favorably binds to the top region of the GABABR2 subunit. The study offers vital insights into the molecular action mechanism of GeX-2, demonstrating its potential as a novel nonopioid analgesic.


Asunto(s)
Analgésicos no Narcóticos , Conotoxinas , Receptores Nicotínicos , Ratas , Humanos , Animales , Conotoxinas/química , Receptores de GABA-B/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Dolor/tratamiento farmacológico , Receptores Nicotínicos/metabolismo , Ácido gamma-Aminobutírico , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
4.
ACS Chem Neurosci ; 14(14): 2537-2547, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37386821

RESUMEN

The main objective of this study was to determine the pharmacological activity and molecular mechanism of action of DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole fumarate), a novel ibogamine derivative, at different nicotinic acetylcholine receptor (nAChR) subtypes. The functional results showed that DM506 neither activates nor potentiates but inhibits ACh-evoked currents at each rat nAChR subtype in a non-competitive manner. The receptor selectivity for DM506 inhibition follows the sequence: α9α10 (IC50 = 5.1 ± 0.3 µM) ≅ α7ß2 (5.6 ± 0.2 µM) ∼ α7 (6.4 ± 0.5 µM) > α6/α3ß2ß3 (25 ± 1 µM) > α4ß2 (62 ± 4 µM) ≅ α3ß4 (70 ± 5 µM). No significance differences in DM506 potency were observed between rat and human α7 and α9α10 nAChRs. These results also indicated that the ß2 subunit is not involved or is less relevant in the activity of DM506 at the α7ß2 nAChR. DM506 inhibits the α7 and α9α10 nAChRs in a voltage-dependent and voltage-independent manner, respectively. Molecular docking and molecular dynamics studies showed that DM506 forms stable interactions with a putative site located in the α7 cytoplasmic domain and with two intersubunit sites in the extracellular-transmembrane junction of the α9α10 nAChR, one located in the α10(+)/α10(─) interface and another in the α10(+)/α9(─) interface. This study shows for the first time that DM506 inhibits both α9α10 and α7 nAChR subtypes by novel allosteric mechanisms likely involving modulation of the extracellular-transmembrane domain junction and cytoplasmic domain, respectively, but not by direct competitive antagonism or open channel block.


Asunto(s)
Receptores Nicotínicos , Ratas , Animales , Humanos , Simulación del Acoplamiento Molecular , Receptor Nicotínico de Acetilcolina alfa 7 , Hidrocarburos Aromáticos con Puentes
5.
Anesth Analg ; 137(3): 691-701, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058425

RESUMEN

BACKGROUND: The primary objective of this study was to characterize the pharmacological and behavioral activity of 2 novel compounds, DM497 [(E)-3-(thiophen-2-yl)- N -(p-tolyl)acrylamide] and DM490 [(E)-3-(furan-2-yl)- N -methyl- N -(p-tolyl)acrylamide], structural derivatives of PAM-2, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor (nAChR). METHODS: A mouse model of oxaliplatin-induced neuropathic pain (2.4 mg/kg, 10 injections) was used to test the pain-relieving properties of DM497 and DM490. To assess possible mechanisms of action, the activity of these compounds was determined at heterologously expressed α7 and α9α10 nAChRs, and voltage-gated N-type calcium channel (Ca V 2.2) using electrophysiological techniques. RESULTS: Cold plate tests indicated that 10 mg/kg DM497 was able to decrease neuropathic pain in mice induced by the chemotherapeutic agent oxaliplatin. In contrast, DM490 induced neither pro- nor antinociceptive activity but inhibited DM497's effect at equivalent dose (30 mg/kg). These effects are not a product of changes in motor coordination or locomotor activity. At α7 nAChRs, DM497 potentiated whereas DM490 inhibited its activity. In addition, DM490 antagonized the α9α10 nAChR with >8-fold higher potency than that for DM497. In contrast, DM497 and DM490 had minimal inhibitory activity at the Ca V 2.2 channel. Considering that DM497 did not increase the mouse exploratory activity, an indirect anxiolytic mechanism was not responsible for the observed antineuropathic effect. CONCLUSIONS: The antinociceptive activity of DM497 and the concomitant inhibitory effect of DM490 are mediated by opposing modulatory mechanisms on the α7 nAChR, whereas the involvement of other possible nociception targets such as the α9α10 nAChR and Ca V 2.2 channel can be ruled out.


Asunto(s)
Neuralgia , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acrilamida , Oxaliplatino , Regulación Alostérica , Analgésicos/farmacología , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Furanos/farmacología , Furanos/uso terapéutico
6.
Pharmacol Res ; 191: 106747, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001708

RESUMEN

The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Conotoxinas/farmacología , Conotoxinas/química , Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Péptidos/farmacología , Membrana Celular/metabolismo , Neuronas/metabolismo , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/uso terapéutico
7.
Int J Biochem Cell Biol ; 157: 106387, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754161

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are master regulators of immune functions via the cholinergic anti-inflammatory pathway and are expressed in microglia, the brain's resident immune cells. There is an extensive dialogue between the neurons and the glial cells around them from which microglia are tasked with monitoring, nurturing, and defending their microenvironment. Dysregulation of any of these processes can have devastating and long-lasting consequences involving microglia-mediated neuroinflammation associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, amongst others. Disease-associated microglia acquire a distinguishing phenotype that emphasizes scavenging and defence functions while nurturing and repairing functions become muted. Attempts to resolve this critical imbalance remain a key focus of research. Furthermore, cholinergic modulation of neuroinflammation represents a promising avenue for treatment.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Colinérgicos , Microglía/metabolismo , Inflamación/metabolismo
8.
Mar Drugs ; 21(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36827123

RESUMEN

Elevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail Conus victoriae (Gen. Comp. Endocrinol. 2017, 244, 11-18). Although numerous elevenin sequences have been reported, their physiological function is unclear, and no structural information is available. Upon intracranial injection in mice, elevenin-Vc1 induced hyperactivity at doses of 5 or 10 nmol. The structure of elevenin-Vc1, determined using nuclear magnetic resonance spectroscopy, consists of a short helix and a bend region stabilised by the single disulfide bond. The elevenin-Vc1 structural fold is similar to that of α-conotoxins such as α-RgIA and α-ImI, which are also found in the venoms of cone snails and are antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). In an attempt to mimic the functional motif, Asp-Pro-Arg, of α-RgIA and α-ImI, we synthesised an analogue, designated elevenin-Vc1-DPR. However, neither elevenin-Vc1 nor the analogue was active at six different human nAChR subtypes (α1ß1εδ, α3ß2, α3ß4, α4ß2, α7, and α9α10) at 1 µM concentrations.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Ratones , Humanos , Animales , Conotoxinas/farmacología , Caracol Conus/metabolismo , Ponzoñas , Receptores Nicotínicos/metabolismo , Péptidos/metabolismo , Antagonistas Nicotínicos/farmacología
9.
Mar Drugs ; 20(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286417

RESUMEN

Chemical investigation of the psychrophilic fungus Pseudogymnoascus sp. HDN17-933 derived from Antarctica led to the discovery of six new tetrapeptides psegymamides A-F (1-6), whose planar structures were elucidated by extensive NMR and MS spectrometric analyses. Structurally, psegymamides D-F (4-6) possess unique backbones bearing a tetrahydropyridoindoles unit, which make them the first examples discovered in naturally occurring peptides. The absolute configurations of structures were unambiguously determined using solid-phase total synthesis assisted by Marfey's method, and all compounds were evaluated for their inhibition of human (h) nicotinic acetylcholine receptor subtypes. Compound 2 showed significant inhibitory activity. A preliminary structure-activity relationship investigation revealed that the tryptophan residue and the C-terminal with methoxy group were important to the inhibitory activity. Further, the high binding affinity of compound 2 to hα4ß2 was explained by molecular docking studies.


Asunto(s)
Ascomicetos , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Simulación del Acoplamiento Molecular , Triptófano , Regiones Antárticas , Ascomicetos/química
10.
J Med Chem ; 65(24): 16204-16217, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137181

RESUMEN

α-Conotoxins (α-CTxs) can selectively target nicotinic acetylcholine receptors (nAChRs) and are important drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α7 nAChR targeting α-CTx Mr1.1 and evaluated its activity at human nAChRs. Mr1.1 was most potent at the human (h) α9α10 nAChR with a half-maximal inhibitory concentration (IC50) of 92.0 nM. Molecular dynamic simulations suggested that Mr1.1 favorably binds at the α10(+)α9(-) and α9(+)α9(-) sites via hydrogen bonds and salt bridges, stabilizing the channel in a closed conformation. Although Mr1.1 and another antagonist, α-CTx Vc1.1 share high sequence similarity and disulfide-bond framework, Mr1.1 has distinct orientations at hα9α10. Based on the Mr1.1-hα9α10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized hα9α10 with an IC50 of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury (CCI) pain model and therefore presents a promising drug candidate.


Asunto(s)
Dolor Crónico , Conotoxinas , Receptores Nicotínicos , Humanos , Ratas , Animales , Conotoxinas/química , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Menor
11.
Mar Drugs ; 20(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36005500

RESUMEN

Conopeptides are peptides in the venom of marine cone snails that are used for capturing prey or as a defense against predators. A new cysteine-poor conopeptide, Czon1107, has exhibited non-competitive inhibition with an undefined allosteric mechanism in the human (h) α3ß4 nicotinic acetylcholine receptors (nAChRs). In this study, the binding mode of Czon1107 to hα3ß4 nAChR was investigated using molecular dynamics simulations coupled with mutagenesis studies of the peptide and electrophysiology studies on heterologous hα3ß4 nAChRs. Overall, this study clarifies the structure-activity relationship of Czon1107 and hα3ß4 nAChR and provides an important experimental and theoretical basis for the development of new peptide drugs.


Asunto(s)
Antagonistas Nicotínicos , Receptores Nicotínicos , Disulfuros/metabolismo , Humanos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Péptidos/química , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad
12.
ACS Chem Neurosci ; 13(8): 1245-1250, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35357806

RESUMEN

α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Secuencia de Aminoácidos , Conotoxinas/farmacología , Cisteína , Disulfuros , Músculos/metabolismo , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074873

RESUMEN

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Asunto(s)
Nociceptores/efectos de los fármacos , Papio/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Canales Iónicos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Tetrodotoxina/farmacología
14.
Mar Life Sci Technol ; 4(1): 98-105, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37073352

RESUMEN

Conotoxins are marine peptide toxins from marine cone snails. The α-conotoxin RegIIA can selectively act on human (h) α3ß4 nicotinic acetylcholine receptor (nAChR), and is an important lead for drug development. The high-resolution cryo-electron microscopy structure of the α3ß4 nAChR demonstrates several carbohydrates are located near the orthosteric binding sites, which may affect α-conotoxin binding. Oligosaccharide chains can modify the physical and chemical properties of proteins by changing the conformation, hydrophobicity, quality and size of the protein. The purpose of this study is to explore the effect of oligosaccharide chains on the binding modes and activities of RegIIA and its derivatives at hα3ß4 nAChRs. Through computational simulations, we designed and synthesized RegIIA mutants at position 14 to explore the importance of residue H14 to the activity of the peptide. Molecular dynamics simulations suggest that the oligosaccharide chains affect the binding of RegIIA at the hα3ß4 nAChR through direct interactions with H14 and by affecting the C-loop conformation of the binding sites. Electrophysiology studies on H14 analogues suggest that in addition to forming direct interactions with the carbohydrates, the residue might play an important role in maintaining the conformation of the peptide. Overall, this study further clarifies the structure-activity relationship of α-conotoxin RegIIA at the hα3ß4 nAChR and, also provides important experimental and theoretical basis for the development of new peptide drugs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00108-9.

15.
Neurol Res ; 43(12): 1056-1068, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34281483

RESUMEN

Clinical intervention of pain is often accompanied by changes in affective behaviors, so both assays of affective and sensorial aspects of nociception play an important role in the development of novel analgesics. Although positive allosteric modulation (PAM) of α7 nicotinic acetylcholine receptors (nAChRs) has been recognized as a novel approach for the relief of sensorial aspects of pain, their effects on affective components of pain remain unclear. Therefore, we investigated whether PAM-4, a highly selective α7-nAChR PAM, attenuates inflammatory and neuropathic pain, as well as the concomitant depressive/anxiety comorbidities. The anti-nociceptive activity of PAM-4 was assessed in mice using the formalin test and chronic constriction injury (CCI)-induced neuropathic pain model. The anxiolytic- and antidepressant-like activity of PAM-4 was evaluated using the marble burying test and forced swimming test. Acute systemic administration of PAM-4 dose-dependently reversed formalin-induced paw licking behavior and CCI-induced mechanical allodynia without development of any motor impairment. PAM-4 reversed the decreased swimming time and number of buried marbles in CCI-treated mice, suggesting that this ligand attenuates chronic pain-induced depression-like behavior and anxiogenic-like effects. The effects of PAM-4 were inhibited by the α7-selective antagonist methyllycaconitine, indicating molecular mechanism mediated by α7-nAChRs. Indeed, electrophysiological recordings showed the PAM-4 enhances human α7 nAChRs with higher potency and efficacy compared to rat α7 nAChRs. These findings suggest that PAM-4 reduces both sensorial and affective behaviors induced by chronic pain in mice by α7-nAChR potentiation. PAM-4 deserves further investigations for the management of chronic painful conditions with comorbidities.


Asunto(s)
Acrilamidas/farmacología , Conducta Animal/efectos de los fármacos , Neuralgia/metabolismo , Nocicepción/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Analgésicos/farmacología , Animales , Ansiedad/etiología , Depresión/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuralgia/psicología
16.
Biochem Pharmacol ; 190: 114638, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062129

RESUMEN

The short disulfide-rich α-conotoxins derived from the venom of Conus snails comprise a conserved CICII(m)CIII(n)CIV cysteine framework (m and n, number of amino acids) and the majority antagonize nicotinic acetylcholine receptors (nAChRs). Depending on disulfide connectivity, α-conotoxins can exist as either globular (CI-CIII, CII-CIV), ribbon (CI-CIV, CII-CIII) or bead (CI-CII, CIII-CIV) isomers. In the present study, C. geographus α-conotoxins GI, GIB, G1.5 and G1.9 were chemically synthesized as globular and ribbon isomers and their activity investigated at human nAChRs expressed in Xenopus oocytes using the two-electrode voltage clamp recording technique. Both the globular and ribbon isomers of the 3/5 (m/n) α-conotoxins GI and GIB selectively inhibit heterologous human muscle-type α1ß1δε nAChRs, whereas G1.5, a 4/7 α-conotoxin, selectively antagonizes neuronal (non-muscle) nAChR subtypes particularly human α3ß2, α7 and α9α10 nAChRs. In contrast, globular and ribbon isomers of G1.9, a novel C-terminal elongated 4/8 α-conotoxin exhibited no activity at the human nAChR subtypes studied. This study reinforces earlier observations that 3/5 α-conotoxins selectively target the muscle nAChR subtypes, although interestingly, GIB is also active at α7 and α9 α10 nAChRs. The 4/7 α-conotoxins target human neuronal nAChR subtypes whereas the pharmacology of the 4/8 α-conotoxin remains unknown.


Asunto(s)
Conotoxinas/química , Conotoxinas/farmacología , Caracol Conus/fisiología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Humanos , Antagonistas Nicotínicos/química , Oocitos , Técnicas de Placa-Clamp , Isoformas de Proteínas , Subunidades de Proteína , Xenopus laevis/metabolismo
17.
J Neurochem ; 159(1): 90-100, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34008858

RESUMEN

α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3ß2ß3 and rα3ß2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3ß2ß3 and hα3ß2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3ß2ß3 subtype compared to rα3ß2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3ß2ß3 and α3ß2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3ß2ß3 nAChRs.


Asunto(s)
Conotoxinas/farmacología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Conotoxinas/química , Conotoxinas/aislamiento & purificación , Caracol Conus , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/aislamiento & purificación , Oocitos , Estructura Terciaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores Nicotínicos/genética , Xenopus laevis
18.
J Med Chem ; 64(6): 3222-3233, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33724033

RESUMEN

Several Conus-derived venom peptides are promising lead compounds for the management of neuropathic pain, with α-conotoxins being of particular interest. Modification of the interlocked disulfide framework of α-conotoxin Vc1.1 has been achieved using on-resin alkyne metathesis. Although introduction of a metabolically stable alkyne motif significantly disrupts backbone topography, the structural modification generates a potent and selective GABAB receptor agonist that inhibits Cav2.2 channels and exhibits dose-dependent reversal of mechanical allodynia in a behavioral rat model of neuropathic pain. The findings herein support the hypothesis that analgesia can be achieved via activation of GABABRs expressed in dorsal root ganglion (DRG) sensory neurons.


Asunto(s)
Alquinos/uso terapéutico , Analgésicos/uso terapéutico , Conotoxinas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Alquinos/química , Analgésicos/química , Animales , Células Cultivadas , Conotoxinas/química , Caracol Conus/química , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Hiperalgesia/fisiopatología , Masculino , Modelos Moleculares , Neuralgia/fisiopatología , Ratas Sprague-Dawley , Xenopus
19.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712468

RESUMEN

Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey's own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.


Asunto(s)
Caracol Conus , Conducta Predatoria , Animales , Caracol Conus/química , Péptidos/química , Feromonas/química , Caracoles
20.
Pharmacol Ther ; 222: 107792, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33309557

RESUMEN

α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.


Asunto(s)
Conotoxinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Animales , Química Farmacéutica , Conotoxinas/farmacología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA