Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3439, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103515

RESUMEN

Ring ATPases that translocate disordered polymers possess lock-washer architectures that they impose on their substrates during transport via a hand-over-hand mechanism. Here, we investigate the operation of ring motors that transport ordered, helical substrates, such as the bacteriophage ϕ29 dsDNA packaging motor. This pentameric motor alternates between an ATP loading dwell and a hydrolysis burst wherein it packages one turn of DNA in four steps. When challenged with DNA-RNA hybrids and dsRNA, the motor matches its burst to the shorter helical pitches, keeping three power strokes invariant while shortening the fourth. Intermittently, the motor loses grip on the RNA-containing substrates, indicating that it makes optimal load-bearing contacts with dsDNA. To rationalize these observations, we propose a helical inchworm translocation mechanism in which, during each cycle, the motor increasingly adopts a lock-washer structure during the ATP loading dwell and successively regains its planar form with each power stroke during the burst.


Asunto(s)
Empaquetamiento del ADN , ADN Viral/química , Proteínas Motoras Moleculares/metabolismo , Conformación de Ácido Nucleico , Bacteriófagos , Modelos Moleculares , Transporte de Proteínas , ARN Viral/química , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 116(13): 5920-5924, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30867295

RESUMEN

Cells must operate far from equilibrium, utilizing and dissipating energy continuously to maintain their organization and to avoid stasis and death. However, they must also avoid unnecessary waste of energy. Recent studies have revealed that molecular machines are extremely efficient thermodynamically compared with their macroscopic counterparts. However, the principles governing the efficient out-of-equilibrium operation of molecular machines remain a mystery. A theoretical framework has been recently formulated in which a generalized friction coefficient quantifies the energetic efficiency in nonequilibrium processes. Moreover, it posits that, to minimize energy dissipation, external control should drive the system along the reaction coordinate with a speed inversely proportional to the square root of that friction coefficient. Here, we demonstrate the utility of this theory for designing and understanding energetically efficient nonequilibrium processes through the unfolding and folding of single DNA hairpins.


Asunto(s)
Metabolismo Energético , Proteínas Motoras Moleculares/metabolismo , ADN/metabolismo , Fricción , Modelos Teóricos , Conformación de Ácido Nucleico , Termodinámica
3.
Proc Natl Acad Sci U S A ; 115(31): 7961-7966, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012596

RESUMEN

Subunits in multimeric ring-shaped motors must coordinate their activities to ensure correct and efficient performance of their mechanical tasks. Here, we study WT and arginine finger mutants of the pentameric bacteriophage φ29 DNA packaging motor. Our results reveal the molecular interactions necessary for the coordination of ADP-ATP exchange and ATP hydrolysis of the motor's biphasic mechanochemical cycle. We show that two distinct regulatory mechanisms determine this coordination. In the first mechanism, the DNA up-regulates a single subunit's catalytic activity, transforming it into a global regulator that initiates the nucleotide exchange phase and the hydrolysis phase. In the second, an arginine finger in each subunit promotes ADP-ATP exchange and ATP hydrolysis of its neighbor. Accordingly, we suggest that the subunits perform the roles described for GDP exchange factors and GTPase-activating proteins observed in small GTPases. We propose that these mechanisms are fundamental to intersubunit coordination and are likely present in other ring ATPases.


Asunto(s)
Adenosina Trifosfatasas , Fagos de Bacillus/enzimología , Modelos Biológicos , Proteínas Virales , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-29735735

RESUMEN

Motor proteins are powered by nucleotide hydrolysis and exert mechanical work to carry out many fundamental biological tasks. To ensure their correct and efficient performance, the motors' activities are allosterically regulated by additional factors that enhance or suppress their NTPase activity. Here, we review two highly conserved mechanisms of ATP hydrolysis activation and repression operating in motor proteins-the glutamate switch and the arginine finger-and their associated regulatory factors. We examine the implications of these regulatory mechanisms in proteins that are formed by multiple ATPase subunits. We argue that the regulatory mechanisms employed by motor proteins display features similar to those described in small GTPases, which require external regulatory elements, such as dissociation inhibitors, exchange factors and activating proteins, to switch the protein's function 'on' and 'off'. Likewise, similar regulatory roles are taken on by the motor's substrate, additional binding factors, and even adjacent subunits in multimeric complexes. However, in motor proteins, more than one regulatory factor and the two mechanisms described here often underlie the machine's operation. Furthermore, ATPase regulation takes place throughout the motor's cycle, which enables a more complex function than the binary 'active' and 'inactive' states.This article is part of a discussion meeting issue 'Allostery and molecular machines'.


Asunto(s)
Adenosina Trifosfato/química , Arginina/química , Ácido Glutámico/química , Proteínas Motoras Moleculares/química , Hidrólisis
5.
Methods Mol Biol ; 1486: 343-355, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27844435

RESUMEN

The past decade has seen an explosion in the use of single-molecule approaches to study complex biological processes. One such approach-optical trapping-is particularly well suited for investigating molecular motors, a diverse group of macromolecular complexes that convert chemical energy into mechanical work, thus playing key roles in virtually every aspect of cellular life. Here we describe how to use high-resolution optical tweezers to investigate the mechanism of the bacteriophage φ29 DNA packaging motor, a ring-shaped ATPase responsible for genome packing during viral assembly. This system illustrates how to use single-molecule techniques to uncover novel, often unexpected, principles of motor operation.


Asunto(s)
Bacteriófagos/fisiología , ADN Viral , Imagen Molecular/métodos , Pinzas Ópticas , Ensamble de Virus , Adenosina Trifosfatasas/metabolismo
6.
Cell ; 157(3): 702-713, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766813

RESUMEN

Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per base pair increases with filling. This change accompanies a reduction in the motor's step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the downregulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated.


Asunto(s)
Fagos de Bacillus/fisiología , Proteínas Motoras Moleculares/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Adenosina Trifosfato/metabolismo , Cápside/química , ADN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...