Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Hum Reprod ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745364

RESUMEN

The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocyst, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-hr transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilisation (N = 1) and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.

2.
Minerva Obstet Gynecol ; 76(2): 159-173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37326354

RESUMEN

In-vitro fertilization (IVF) aims at overcoming the causes of infertility and lead to a healthy live birth. To maximize IVF efficiency, it is critical to identify and transfer the most competent embryo within a cohort produced by a couple during a cycle. Conventional static embryo morphological assessment involves sequential observations under a light microscope at specific timepoints. The introduction of time-lapse technology enhanced morphological evaluation via the continuous monitoring of embryo preimplantation in vitro development, thereby unveiling features otherwise undetectable via multiple static assessments. Although an association exists, blastocyst morphology poorly predicts chromosomal competence. In fact, the only reliable approach currently available to diagnose the embryonic karyotype is trophectoderm biopsy and comprehensive chromosome testing to assess non-mosaic aneuploidies, namely preimplantation genetic testing for aneuploidies (PGT-A). Lately, the focus is shifting towards the fine-tuning of non-invasive technologies, such as "omic" analyses of waste products of IVF (e.g., spent culture media) and/or artificial intelligence-powered morphologic/morphodynamic evaluations. This review summarizes the main tools currently available to assess (or predict) embryo developmental, chromosomal, and reproductive competence, their strengths, the limitations, and the most probable future challenges.


Asunto(s)
Inteligencia Artificial , Blastocisto , Humanos , Blastocisto/patología , Pruebas Genéticas , Fertilización In Vitro , Aneuploidia
3.
Gynecol Endocrinol ; 39(1): 2276163, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913790

RESUMEN

OBJECTIVE: To investigate whether the Anti-Müllerian Hormone (AMH), an ovarian hormone belonging to the Transforming Growth Factor ß superfamily, may represent a possible candidate for use as a bone anabolic factor. METHODS: We performed in vitro studies on Human Osteoblasts (HOb) to evaluate the expression and the functionality of AMHRII, the AMH receptor type-2, and investigate the effects of exogenous AMH exposure on osteogenic gene expression and osteoblast functions. RESULTS: We reported the first evidence for the expression and functionality of AMHRII in HOb cells, thus suggesting that osteoblasts may represent a specific target for exogenous AMH treatment. Furthermore, the exposure to AMH exerted a stimulatory effect on HOb cells leading to the activation of osteogenic genes, including the upregulation of osteoblastic transcription factors such as RUNX and OSX, along with increased deposition of mineralized nodules. CONCLUSION: Our findings proved interesting clues on the stimulatory effects of AMH on mature osteoblasts expressing its specific receptor, AMHRII. This study may therefore have translation value in opening the perspective that AMH may be an effective candidate to counteract the bone loss in osteoporotic patients by selectively targeting osteoblast with minimal off-target effect.


Asunto(s)
Hormona Antimülleriana , Hormonas Peptídicas , Humanos , Hormona Antimülleriana/farmacología , Diferenciación Celular , Expresión Génica , Osteoblastos/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética
4.
Gynecol Endocrinol ; 39(1): 2224457, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331376

RESUMEN

Objective: To investigate the expression and localization of Vasorin (Vasn) in human female reproductive system. Methods: The presence of Vasorin was evaluated by RT-PCR and immunoblotting analyses in patient-derived endometrial, myometrial and granulosa cells (GCs) primary cultures. Immunostaining analyses were performed to detect Vasn localization in primary cultures and in ovarian and uterine tissues. Results: Vasn mRNA was detected in patient-derived endometrial, myometrial and GCs primary cultures without significant differences at the transcript level. Otherwise, immunoblotting analysis showed that Vasn protein levels were significantly higher in GCs than proliferative endometrial stromal cells (ESCs) and myometrial cells. Immunohistochemistry performed in ovarian tissues revealed that Vasn was expressed in the GCs of ovarian follicles at different stages of development with a higher immunostaining signal in mature ovarian follicles such as the antral follicle or on the surface of cumulus oophorus cells than in early-stage follicles. The immunostaining of uterine tissues showed that Vasn was expressed in the proliferative stroma endometrium while it was significantly less expressed in the secretory endometrium. Conversely, no protein immunoreactivity was revealed in health myometrial tissue. Conclusions: Our results revealed the presence of Vasn in the ovary and the endometrium. The pattern of Vasn expression and distribution suggests that this protein may have a role in the regulation of processes such as folliculogenesis, oocyte maturation, and endometrial proliferation.


Asunto(s)
Folículo Ovárico , Ovario , Femenino , Humanos , Células de la Granulosa , Miometrio , Folículo Ovárico/metabolismo , Útero
5.
Cancers (Basel) ; 15(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37370841

RESUMEN

BACKGROUND: Clinical evidence has shown frequent hypogonadism following mitotane (MTT) treatment in male patients with adrenocortical carcinoma. This study aimed to evaluate the impact of MTT on male gonadal function. METHODS: Morphological analysis of testes and testosterone assays were performed on adult CD1 MTT-treated and untreated mice. The expression of key genes involved in interstitial and tubular compartments was studied by real-time PCR. Moreover, quantitative and qualitative analysis of spermatozoa was performed. RESULTS: Several degrees of damage to the testes and a significant testosterone reduction in MTT-treated mice were observed. A significant decline in 3ßHsd1 and Insl3 mRNA expression in the interstitial compartment confirmed an impairment of androgen production. Fsh-R mRNA expression was unaffected by MTT, proving that Sertoli cells are not the drug's primary target. Sperm concentrations were significantly lower in MTT-treated animals. Moreover, the drug caused a significant increase in the percentage of spermatozoa with abnormal chromatin structures. CONCLUSION: MTT negatively affects the male reproductive system, including changes in the morphology of testicular tissue and reductions in sperm concentration and quality.

6.
J Clin Med ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902592

RESUMEN

Preimplantation genetic testing for aneuploidies (PGT-A) is arguably the most effective embryo selection strategy. Nevertheless, it requires greater workload, costs, and expertise. Therefore, a quest towards user-friendly, non-invasive strategies is ongoing. Although insufficient to replace PGT-A, embryo morphological evaluation is significantly associated with embryonic competence, but scarcely reproducible. Recently, artificial intelligence-powered analyses have been proposed to objectify and automate image evaluations. iDAScore v1.0 is a deep-learning model based on a 3D convolutional neural network trained on time-lapse videos from implanted and non-implanted blastocysts. It is a decision support system for ranking blastocysts without manual input. This retrospective, pre-clinical, external validation included 3604 blastocysts and 808 euploid transfers from 1232 cycles. All blastocysts were retrospectively assessed through the iDAScore v1.0; therefore, it did not influence embryologists' decision-making process. iDAScore v1.0 was significantly associated with embryo morphology and competence, although AUCs for euploidy and live-birth prediction were 0.60 and 0.66, respectively, which is rather comparable to embryologists' performance. Nevertheless, iDAScore v1.0 is objective and reproducible, while embryologists' evaluations are not. In a retrospective simulation, iDAScore v1.0 would have ranked euploid blastocysts as top quality in 63% of cases with one or more euploid and aneuploid blastocysts, and it would have questioned embryologists' ranking in 48% of cases with two or more euploid blastocysts and one or more live birth. Therefore, iDAScore v1.0 may objectify embryologists' evaluations, but randomized controlled trials are required to assess its clinical value.

7.
Cell Death Dis ; 13(8): 737, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028501

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Progeria , Núcleo Celular , Fibroblastos , Humanos , Lamina Tipo A , Inhibidor 1 de Activador Plasminogénico/metabolismo
8.
J Cell Biochem ; 123(9): 1440-1453, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35775813

RESUMEN

Ovarian cancer is the fifth leading cause of cancer-related deaths in females. Many ovarian tumor cell lines express muscarinic receptors (mAChRs), and their expression is correlated with reduced survival of patients. We have characterized the expression of mAChRs in two human ovarian carcinoma cell lines (SKOV-3, TOV-21G) and two immortalized ovarian surface epithelium cell lines (iOSE-120, iOSE-398). Among the five subtypes of mAChRs (M1-M5 receptors), we focused our attention on the M2 receptor, which is involved in the inhibition of tumor cell proliferation. Western blot analysis and real-time PCR analyses indicated that the levels of M2 are statistically downregulated in cancer cells. Therefore, we investigated the effect of arecaidine propargyl ester hydrobromide (APE), a preferential M2 agonist, on cell growth and survival. APE treatment decreased cell number in a dose and time-dependent manner by decreasing cell proliferation and increasing cell death. FACS and immunocytochemistry analysis have also demonstrated the ability of APE to accumulate the cells in G2/M phase of the cell cycle and to increase the percentage of abnormal mitosis. The higher level of M2 receptors in the iOSE cells rendered these cells more sensitive to APE treatment than cancer cells. The data here reported suggest that M2 has a negative role in cell growth/survival of ovarian cell lines, and its downregulation may favor tumor progression.


Asunto(s)
Hominidae , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario , Ciclo Celular , Proliferación Celular , Ésteres/farmacología , Femenino , Hominidae/metabolismo , Humanos , Neoplasias Ováricas/genética , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos
9.
Molecules ; 26(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946750

RESUMEN

Due to the microenvironment created by Schwann cell (SC) activity, peripheral nerve fibers are able to regenerate. Inflammation is the first response to nerve damage and the removal of cellular and myelin debris is essential in preventing the persistence of the local inflammation that may negatively affect nerve regeneration. Acetylcholine (ACh) is one of the neurotransmitters involved in the modulation of inflammation through the activity of its receptors, belonging to both the muscarinic and nicotinic classes. In this report, we evaluated the expression of α7 nicotinic acetylcholine receptors (nAChRs) in rat sciatic nerve, particularly in SCs, after peripheral nerve injury. α7 nAChRs are absent in sciatic nerve immediately after dissection, but their expression is significantly enhanced in SCs after 24 h in cultured sciatic nerve segments or in the presence of the proinflammatory neuropeptide Bradykinin (BK). Moreover, we found that activation of α7 nAChRs with the selective partial agonist ICH3 causes a decreased expression of c-Jun and an upregulation of uPA, MMP2 and MMP9 activity. In addition, ICH3 treatment inhibits IL-6 transcript level expression as well as the cytokine release. These results suggest that ACh, probably released from regenerating axons or by SC themselves, may actively promote through α7 nAChRs activation an anti-inflammatory microenvironment that contributes to better improving the peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/metabolismo , Animales , Células Cultivadas , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Células de Schwann/metabolismo
10.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846966

RESUMEN

Melanoma is one of the most aggressive and treatment-resistant human cancers. The two-pore channel 2 (TPC2) is located on late endosomes, lysosomes and melanosomes. Here, we characterized how TPC2 knockout (KO) affected human melanoma cells derived from a metastatic site. TPC2 KO increased these cells' ability to invade the extracelullar matrix and was associated with the increased expression of mesenchymal markers ZEB-1, Vimentin and N-Cadherin, and the enhanced secretion of MMP9. TPC2 KO also activated genes regulated by YAP/TAZ, which are key regulators of tumourigenesis and metastasis. Expression levels of ORAI1, a component of store-operated Ca2+ entry (SOCE), and PKC-ßII, part of the HIPPO pathway that negatively regulates YAP/TAZ activity, were reduced by TPC2 KO and RNA interference knockdown. We propose a cellular mechanism mediated by ORAI1/Ca2+/PKC-ßII to explain these findings. Highlighting their potential clinical significance, patients with metastatic tumours showed a reduction in TPC2 expression. Our research indicates a novel role of TPC2 in melanoma. While TPC2 loss may not activate YAP/TAZ target genes in primary melanoma, in metastatic melanoma it could activate such genes and increase cancer aggressiveness. These findings aid the understanding of tumourigenesis mechanisms and could provide new diagnostic and treatment strategies for skin cancer and other metastatic cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA