Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Microbiol ; 8(11): 2050-2066, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845316

RESUMEN

Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Hierro/metabolismo , Ecosistema , Biomasa , Océanos y Mares , Proteínas/metabolismo , Bombas de Protones/metabolismo
3.
Nature ; 620(7972): 104-109, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532817

RESUMEN

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Asunto(s)
Hierro , Minerales , Agua de Mar , Hierro/análisis , Hierro/química , Hierro/metabolismo , Ligandos , Minerales/análisis , Minerales/química , Minerales/metabolismo , Ciclo del Carbono , Conjuntos de Datos como Asunto , Océano Atlántico , Agua de Mar/análisis , Agua de Mar/química , Bermudas , Factores de Tiempo , Estaciones del Año , Soluciones/química , Internacionalidad
4.
Nature ; 621(7978): 330-335, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587345

RESUMEN

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Asunto(s)
Modelos Climáticos , El Niño Oscilación del Sur , Hierro , Clorofila/metabolismo , Cambio Climático , Fluorescencia , Hierro/metabolismo , Nutrientes/metabolismo , Océano Pacífico , Fitoplancton/metabolismo , Proteómica , Radiometría , Imágenes Satelitales
5.
Glob Chang Biol ; 29(18): 5250-5260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409536

RESUMEN

Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2 . However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The 'biogeochemical fingerprint' of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Hierro , Dióxido de Carbono/análisis , Océanos y Mares , Fertilización
6.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220065, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37150202

RESUMEN

Iron (Fe) is a key limiting nutrient driving the biological carbon pump and is routinely represented in global ocean biogeochemical models. However, in the Southern Ocean, the potential role for other micronutrients has not received the same attention. For example, although manganese (Mn) is essential to photosynthetic oxygen production and combating oxidative stress, it is not included in ocean models and a clear understanding of its interaction with Fe in the region is lacking. This is especially important for the Southern Ocean because both Mn and Fe are strongly depleted. We use a hierarchical modelling approach to explore how the physiological traits associated with Fe and Mn contribute to driving the footprint of micronutrient stress across different phytoplankton functional types (PFTs). We find that PFT responses are driven by physiological traits associated with their physiological requirements and acclimation to environmental conditions. Southern Ocean-specific adaptations to prevailing low Fe, such as large photosynthetic antenna sizes, are of major significance for the regional biological carbon pump. Other traits more strongly linked to Mn, such as dealing with oxidative stress, may become more important under a changing Fe supply regime. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.


Asunto(s)
Hierro , Manganeso , Manganeso/metabolismo , Carbono , Proteínas de Transporte de Membrana , Océanos y Mares
7.
Science ; 379(6634): 834-840, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821685

RESUMEN

Southern Ocean primary productivity is principally controlled by adjustments in light and iron limitation, but the spatial and temporal determinants of iron availability, accessibility, and demand are poorly constrained, which hinders accurate long-term projections. We present a multidecadal record of phytoplankton photophysiology between 1996 and 2022 from historical in situ datasets collected by Biogeochemical Argo (BGC-Argo) floats and ship-based platforms. We find a significant multidecadal trend in irradiance-normalized nonphotochemical quenching due to increasing iron stress, with concomitant declines in regional net primary production. The observed trend of increasing iron stress results from changing Southern Ocean mixed-layer physics as well as complex biological and chemical feedback that is indicative of important ongoing changes to the Southern Ocean carbon cycle.


Asunto(s)
Hierro , Fitoplancton , Estrés Fisiológico , Océanos y Mares , Fitoplancton/fisiología , Agua de Mar/química
8.
Sci Total Environ ; 862: 161179, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581276

RESUMEN

Hydrothermal vent sites found along mid-ocean ridges are sources of numerous reduced chemical species and trace elements. To establish dissolved iron (II) (dFe(II)) variability along the Mid Atlantic Ridge (between 39.5°N and 26°N), dFe(II) concentrations were measured above six hydrothermal vent sites, as well as at stations with no active hydrothermal activity. The dFe(II) concentrations ranged from 0.00 to 0.12 nmol L-1 (detection limit = 0.02 ± 0.02 nmol L-1) in non-hydrothermally affected regions to values as high as 12.8 nmol L-1 within hydrothermal plumes. Iron (II) in seawater is oxidised over a period of minutes to hours, which is on average two times faster than the time required to collect the sample from the deep ocean and its analysis in the onboard laboratory. A multiparametric equation was used to estimate the original dFe(II) concentration in the deep ocean. The in-situ temperature, pH, salinity and delay between sample collection and its analysis were considered. The results showed that dFe(II) plays a more significant role in the iron pool than previously accounted for, constituting a fraction >20 % of the dissolved iron pool, in contrast to <10 % of the iron pool formerly reported. This discrepancy is caused by Fe(II) loss during sampling when between 35 and 90 % of the dFe(II) gets oxidised. In-situ dFe(II) concentrations are therefore significantly higher than values reported in sedimentary and hydrothermal settings where Fe is added to the ocean in its reduced form. Consequently, the high dynamism of dFe(II) in hydrothermal environments masks the magnitude of dFe(II) sourced within the deep ocean.


Asunto(s)
Respiraderos Hidrotermales , Oligoelementos , Hierro/análisis , Agua de Mar , Océano Atlántico , Oligoelementos/análisis , Temperatura
9.
Glob Chang Biol ; 28(23): 7078-7093, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054414

RESUMEN

Marine nitrogen fixation is a major source of new nitrogen to the ocean, which interacts with climate driven changes to physical nutrient supply to regulate the response of ocean primary production in the oligotrophic tropical ocean. Warming and changes in nutrient supply may alter the ecological niche of nitrogen-fixing organisms, or 'diazotrophs', however, impacts of warming on diazotroph physiology may also be important. Lab-based studies reveal that warming increases the nitrogen fixation-specific elemental use efficiency (EUE) of two prevalent marine diazotrophs, Crocosphaera and Trichodesmium, thus reducing their requirements for the limiting nutrients iron and phosphorus. Here, we coupled a new diazotroph model based upon observed diazotroph energetics of growth and resource limitation to a state-of-the-art global model of phytoplankton physiology and ocean biogeochemistry. Our model is able to address the integrated response of nitrogen fixation by Trichodesmium and Crocosphaera to warming under the IPCC high emission RCP8.5 scenario for the first time. Our results project a global decline in nitrogen fixation over the coming century. However, the regional response of nitrogen fixation to climate change is modulated by the diazotroph-specific thermal performance curves and EUE, particularly in the Pacific Ocean, which shapes global trends. Spatially, the response of both diazotrophs is similar with expansion towards higher latitudes and reduced rates of nitrogen fixation in the lower latitudes. Overall, 95%-97% of the nitrogen fixation climate signal can be attributed to the combined effect of temperature on the niche and physiology of marine diazotrophs, with decreases being associated with a reduced niche and increases resulting due to a combination of expanding niche and temperature driven changes to EUE. Climate change impacts on both the niche and physiology of marine diazotrophs interact to shape patterns of marine nitrogen fixation, which will have important implications for ocean productivity in the future.


Asunto(s)
Cianobacterias , Nitrógeno , Agua de Mar/química , Fijación del Nitrógeno/fisiología , Fósforo
10.
ISME J ; 16(10): 2329-2336, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35798938

RESUMEN

Surface ocean pH is declining due to anthropogenic atmospheric CO2 uptake with a global decline of ~0.3 possible by 2100. Extracellular pH influences a range of biological processes, including nutrient uptake, calcification and silicification. However, there are poor constraints on how pH levels in the extracellular microenvironment surrounding phytoplankton cells (the phycosphere) differ from bulk seawater. This adds uncertainty to biological impacts of environmental change. Furthermore, previous modelling work suggests that phycosphere pH of small cells is close to bulk seawater, and this has not been experimentally verified. Here we observe under 140 µmol photons·m-2·s-1 the phycosphere pH of Chlamydomonas concordia (5 µm diameter), Emiliania huxleyi (5 µm), Coscinodiscus radiatus (50 µm) and C. wailesii (100 µm) are 0.11 ± 0.07, 0.20 ± 0.09, 0.41 ± 0.04 and 0.15 ± 0.20 (mean ± SD) higher than bulk seawater (pH 8.00), respectively. Thickness of the pH boundary layer of C. wailesii increases from 18 ± 4 to 122 ± 17 µm when bulk seawater pH decreases from 8.00 to 7.78. Phycosphere pH is regulated by photosynthesis and extracellular enzymatic transformation of bicarbonate, as well as being influenced by light intensity and seawater pH and buffering capacity. The pH change alters Fe speciation in the phycosphere, and hence Fe availability to phytoplankton is likely better predicted by the phycosphere, rather than bulk seawater. Overall, the precise quantification of chemical conditions in the phycosphere is crucial for assessing the sensitivity of marine phytoplankton to ongoing ocean acidification and Fe limitation in surface oceans.


Asunto(s)
Hierro , Fitoplancton , Bicarbonatos , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
11.
Nat Ecol Evol ; 6(7): 965-978, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654896

RESUMEN

Zinc is an essential trace metal for oceanic primary producers with the highest concentrations in polar oceans. However, its role in the biological functioning and adaptive evolution of polar phytoplankton remains enigmatic. Here, we have applied a combination of evolutionary genomics, quantitative proteomics, co-expression analyses and cellular physiology to suggest that model polar phytoplankton species have a higher demand for zinc because of elevated cellular levels of zinc-binding proteins. We propose that adaptive expansion of regulatory zinc-finger protein families, co-expanded and co-expressed zinc-binding proteins families involved in photosynthesis and growth in these microalgal species and their natural communities were identified to be responsible for the higher zinc demand. The expression of their encoding genes in eukaryotic phytoplankton metatranscriptomes from pole-to-pole was identified to correlate not only with dissolved zinc concentrations in the upper ocean but also with temperature, suggesting that environmental conditions of polar oceans are responsible for an increased demand of zinc. These results suggest that zinc plays an important role in supporting photosynthetic growth in eukaryotic polar phytoplankton and that this has been critical for algal colonization of low-temperature polar oceans.


Asunto(s)
Fitoplancton , Zinc , Océanos y Mares , Fotosíntesis , Fitoplancton/genética , Temperatura
12.
Glob Chang Biol ; 28(9): 3054-3065, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202506

RESUMEN

Multiple environmental forcings, such as warming and changes in ocean circulation and nutrient supply, are affecting the base of Arctic marine ecosystems, with cascading effects on the entire food web through bottom-up control. Stable nitrogen isotopes (δ15 N) can be used to detect and unravel the impact of these forcings on this unique ecosystem, if the many processes that affect the δ15 N values are constrained. Combining unique 60-year records from compound specific δ15 N biomarkers on harp seal teeth alongside state-of-the-art ocean modelling, we observed a significant decline in the δ15 N values at the base of the Barents Sea food web from 1951 to 2012. This strong and persistent decadal trend emerges due to the combination of anthropogenic atmospheric nitrogen deposition in the Atlantic, increased northward transport of Atlantic water through Arctic gateways and local feedbacks from increasing Arctic primary production. Our results suggest that the Arctic ecosystem has been responding to anthropogenically induced local and remote drivers, linked to changing ocean biology, chemistry and physics, for at least 60 years. Accounting for these trends in δ15 N values at the base of the food web is essential to accurately detect ecosystem restructuring in this rapidly changing environment.


Asunto(s)
Caniformia , Phocidae , Animales , Regiones Árticas , Ecosistema , Cadena Alimentaria
13.
Glob Chang Biol ; 28(7): 2312-2326, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35040239

RESUMEN

Climate change is shifting the distribution of shared fish stocks between neighboring countries' Exclusive Economic Zones (EEZs) and the high seas. The timescale of these transboundary shifts determines how climate change will affect international fisheries governance. Here, we explore this timescale by coupling a large ensemble simulation of an Earth system model under a high emission climate change scenario to a dynamic population model. We show that by 2030, 23% of transboundary stocks will have shifted and 78% of the world's EEZs will have experienced at least one shifting stock. By the end of this century, projections show a total of 45% of stocks shifting globally and 81% of EEZs waters with at least one shifting stock. The magnitude of such shifts is reflected in changes in catch proportion between EEZs sharing a transboundary stock. By 2030, global EEZs are projected to experience an average change of 59% in catch proportion of transboundary stocks. Many countries that are highly dependent on fisheries for livelihood and food security emerge as hotspots for transboundary shifts. These hotspots are characterized by early shifts in the distribution of an important number of transboundary stocks. Existing international fisheries agreements need to be assessed for their capacity to address the social-ecological implications of climate-change-driven transboundary shifts. Some of these agreements will need to be adjusted to limit potential conflict between the parties of interest. Meanwhile, new agreements will need to be anticipatory and consider these concerns and their associated uncertainties to be resilient to global change.


El cambio climático está afectando la distribución de las poblaciones de fauna marina compartidas por Zonas Económicas Exclusivas (ZEEs) de países vecinos y en el alta mar. Los efectos del cambio climático en el manejo pesquero internacional estarán determinados por la escala temporal de dichos desplazamientos transfronterizos. Para determinar esa escala temporal, el presente estudio combinó un modelo dinámico poblacional, con una serie de simulaciones de un modelo del sistema terrestre, bajo un escenario de cambio climático de altas emisiones. Los resultados siguieren que para 2030, el 23% de las poblaciones transfronterizas se habrán desplazado y en el 78% de las ZEEs del mundo habrán experimentado cambios en la distribución de al menos una población transfronteriza. Para fines de este siglo, las proyecciones muestran que el 81% de las ZEEs tendrán al menos una población en movimiento y 45% de las poblaciones transfronterizas globales habrán cambiado su distribución. La magnitud de tal desplazamiento se reflejará en un cambio promedio del 59% de la proporción de captura de poblaciones transfronterizas entre ZEEs vecinas para el 2030. Muchos países que dependen de la pesca para sustento económico y seguridad alimentaria emergen como zonas críticas de cambios transfronterizos. Estas zonas se caracterizan por cambios tempranos en la distribución de un número importante de poblaciones transfronterizas. Por lo tanto, los acuerdos pesqueros internacionales deben evaluarse por su capacidad para responder a los impactos socio-ecológicos del desplazamiento de poblaciones transfronterizas debido al cambio climático. Dichos acuerdos deberán de ser ajustados para limitar los posibles conflictos entre las partes de interés y evitar amenazar la sustentabilidad del recurso. Así mismo, los nuevos acuerdos que vayan a establecerse deberán considerar los posibles cambios en la distribución de poblaciones compartidas (y la incertidumbre asociada) para anticiparse a dichos conflictos y aumentar la resiliencia frente al cambio climático.


Le changement climatique altère la distribution des stocks de poissons exploités posant de sérieux problèmes de juridiction et gestion des espèces partagées entre pays voisins, et/ou avec la haute mer. C'est en analysant l'échelle de temps de ces migrations transfrontalières que l'impact du changement climatique sur la gouvernance mondiale des pêches peut être évalué. Dans cette étude, nous explorons cette échelle de temps à l'aide d'un modèle de dynamique des populations marines exploitées couplé à des simulations dérivées d'un ensemble de modèles globaux océan-atmosphère. Les résultats montrent que d'ici 2030, pour le scénario à hautes émissions, 23% des stocks transfrontaliers auront changé de distribution et que 78% des zones économiques exclusives (ZEE) expérimenteront au moins une nouvelle espèce transfrontalière. A la fin du siècle, et pour ce même scénario, 81% des ZEE auront au moins une espèce transfrontalière et 45% des stocks transfrontaliers auront changé de distribution. La magnitude de tels changements de distribution est ici quantifiée par la variation dans la proportion de capture entre ZEE partageant ce stock transfrontalier. D'ici 2030, de tels changements entre ZEE seront de l'ordre de 59% à l'échelle globale, avec de nombreux pays dont la qualité de vie et la sécurité alimentaire dépendent de la pêche émergeant comme zones à haut risque. Ces zones se caractérisent par le déplacement précoce d'un grand nombre de stocks transfrontaliers. A la lumière de ces résultats, les traités et accords de pêche internationaux doivent être évalués pour leur capacité à répondre aux implications socio-écologiques du changement climatique et renégocier afin d'éviter tout conflit entre pays voisins. En anticipant des changements potentiels de distribution entre stocks transfrontaliers, tout nouvel accord de pêche se voudra plus résilient aux effets du changement climatique.


As mudanças climáticas vêm promovendo alterações na distribuição dos estoques de peixes compartilhados por países vizinhos, tanto nas suas Zonas Econômicas Exclusivas (ZEE) como em águas oceânicas internacionais. A escala de tempo desse deslocamento transfronteiriço vai determinar como as mudanças climáticas afetarão o manejo pesqueiro internacional. Diante disso, o presente trabalho teve por objetivo analisar essa escala de tempo, combinando um amplo conjunto de simulações de um modelo do sistema terrestre sob um cenário de mudanças climáticas de altas emissões a um modelo de dinâmica populacional. Foi observado que, para 2030, 23% dos estoques transfronteiriços terão suas distribuições alteradas e 78% das ZEEs do mundo terão experimentado deslocamentos em pelo menos um estoque transfronteiriço. No final deste século, as projeções mostram que 45% dos estoques transfronteiriços do mundo sofrerão alterações e que 81% das ZEEs apresentarão alterações em pelo menos um estoque. A magnitude de tal deslocamento será refletida por uma mudança média de 59% na proporção de capturas de estoques transfronteiriços entre ZEEs vizinhas no ano de 2030. Muitos países que são altamente dependentes da pesca para subsistência e segurança alimentar surgem como pontos críticos para mudanças transfronteiriças. Estes são caracterizados por mudanças iniciais na distribuição de um número importante de estoques transfronteiriços. Os acordos internacionais de pesca precisam ser avaliados quanto à sua capacidade de abordar as implicações sócio-ecológicas de deslocamentos transfronteiriços impulsionados pelas mudanças climáticas e ajustados para limitar um possível conflito entre as partes de interesse. Da mesma forma, novos acordos devem considerar possíveis mudanças na distribuição de populações transfronteiriças a fim de antecipar tais conflitos e construir resiliência em face das mudanças climáticas e das incertezas que as acompanha.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Cambio Climático , Ecosistema , Peces , Océanos y Mares
14.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983875

RESUMEN

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio/análisis , Atún , Animales , Asia , Ecología , Monitoreo del Ambiente/métodos , Europa (Continente) , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Metilación , Modelos Teóricos , América del Norte , Océano Pacífico , Alimentos Marinos , Agua de Mar , Contaminantes del Agua , Contaminantes Químicos del Agua/análisis
15.
Ambio ; 51(2): 383-397, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34628601

RESUMEN

Nitrogen stable isotopes (δ15N) are used to study food web and foraging dynamics due to the step-wise enrichment of tissues with increasing trophic level, but they rely on the isoscape baseline that varies markedly in the Arctic due to the interplay between Atlantic- and Pacific-origin waters. Using a hierarchy of simulations with a state-of-the-art ocean-biogeochemical model, we demonstrate that the canonical isotopic gradient of 2-3‰ between the Pacific and Atlantic sectors of the Arctic Ocean has grown to 3-4‰ and will continue to expand under a high emissions climate change scenario by the end of the twenty-first century. δ15N increases in the Pacific-influenced high Arctic due to increased primary production, while Atlantic sector decreases result from the integrated effects of Atlantic inflow and anthropogenic inputs. While these trends will complicate longitudinal food web studies using δ15N, they may aid those focussed on movement as the Arctic isoscape becomes more regionally distinct.


Asunto(s)
Cadena Alimentaria , Nitrógeno , Regiones Árticas , Isótopos de Nitrógeno/análisis , Océanos y Mares
16.
Global Biogeochem Cycles ; 36(11): e2022GB007382, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37034112

RESUMEN

Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.

17.
Ann Rev Mar Sci ; 14: 303-330, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34416126

RESUMEN

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.


Asunto(s)
Ecosistema , Viento , Aerosoles/análisis , Atmósfera , Nutrientes , Océanos y Mares
18.
Nat Commun ; 12(1): 6214, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711843

RESUMEN

The open ocean nitrogen cycle is being altered by increases in anthropogenic atmospheric nitrogen deposition and climate change. How the nitrogen cycle responds will determine long-term trends in net primary production (NPP) in the nitrogen-limited low latitude ocean, but is poorly constrained by uncertainty in how the source-sink balance will evolve. Here we show that intensifying nitrogen limitation of phytoplankton, associated with near-term reductions in NPP, causes detectable declines in nitrogen isotopes (δ15N) and constitutes the primary perturbation of the 21st century nitrogen cycle. Model experiments show that ~75% of the low latitude twilight zone develops anomalously low δ15N by 2060, predominantly due to the effects of climate change that alter ocean circulation, with implications for the nitrogen source-sink balance. Our results highlight that δ15N changes in the low latitude twilight zone may provide a useful constraint on emerging changes to nitrogen limitation and NPP over the 21st century.


Asunto(s)
Isótopos de Nitrógeno/análisis , Agua de Mar/análisis , Cambio Climático , Ciclo del Nitrógeno , Isótopos de Nitrógeno/metabolismo , Océanos y Mares , Fitoplancton/metabolismo
19.
Sci Adv ; 7(32)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34362734

RESUMEN

Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently unclear how micronutrient scarcity affects cellular processes and how interdependence across micronutrients arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding an approach for estimating biogeochemical metrics, including taxon-specific growth rates. Our results show that cumulative cellular costs govern how environmental conditions modify phytoplankton growth.

20.
Glob Chang Biol ; 27(19): 4758-4770, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34228873

RESUMEN

Recycling by zooplankton has emerged as an important process driving the cycling of essential micronutrients in the upper ocean. Resupply of nutrients by upper ocean recycling is itself controlled by multiple biotic and abiotic factors. Although the response of these drivers to climate change will shape future recycling rates and their stoichiometry, their magnitude and variability are unaddressed by climate change projections, which means potentially important feedbacks on surface biogeochemistry are neglected. Here, we assess the impacts of climate change under the high emissions RCP8.5 scenario on the recycling of the essential micronutrients Fe, Zn, Cu, Co and Mn and quantify the regional control by zooplankton food quality, prey quantity, sea surface temperature and zooplankton biomass. A statistical assessment of our model results reveals that the variability in recycling fluxes across all micronutrients is mainly driven by the variability of zooplankton and prey biomass. In contrast, the variability in micronutrient recycling stoichiometry and its response to climate change are more complex and is regulated by zooplankton food quality and prey quantity. Regionally, the relative influence of each driver on recycling changes in our model by the end of the 21st century. Temperature becomes an important driving factor in the polar regions while the expansion of oligotrophic regions leads to the importance of food quality increase for low and mid-latitudes. These responses lead to novel feedbacks that can amplify the response of surface ocean biogeochemistry and alter nutrient deficiency regimes.


Asunto(s)
Cambio Climático , Zooplancton , Animales , Biomasa , Ecosistema , Retroalimentación , Micronutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA