RESUMEN
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Organoides , Expresión Génica , Diferenciación CelularRESUMEN
BACKGROUND: Cachexia is a life-threatening condition observed in several pathologies, such as cancer or chronic diseases. Interleukin 10 (Il10) gene transfer is known to improve cachexia by downregulating Il6. Here, we used an IL10-knockout mouse model to simulate cachexia and investigate the effects of eggshell membrane (ESM), a resistant protein, on general pre-cachexia symptoms, which is particularly important for the development of cachexia therapeutics. METHODS: Five-week-old male C57BL6/J mice were fed an AIN-93G powdered diet (WT), and 5-week-old male B6.129P2-Il10 < tm1Cgn>/J (IL10-/- ) mice were fed either the AIN-93G diet (KO) or an 8% ESM-containing diet (KOE) for 28 weeks. The tissue weight and levels of anaemia-, blood glucose-, lipid metabolism-, and muscular and colonic inflammation-related biochemical markers were measured. Transcriptomic analysis on liver and colon mucus and proteomic analysis on skeletal muscle were performed. Ingenuity Pathway Analysis was used to identify molecular pathways and networks. Caecal short-chain fatty acids (SCFAs) were identified using HPLC, and caecal bacteria DNA were subjected to metagenomic analysis. Flow cytometry analysis was performed to measure the CD4+ IL17+ T cells in mesenteric lymph nodes. RESULTS: The body weight, weight of gastrocnemius muscle and fat tissues, colon weight/length ratio, plasma HDL and NEFA, muscular PECAM-1 levels (P < 0.01), plasma glucose and colonic mucosal myeloperoxidase activity (P < 0.05) and T helper (Th) 17 cell abundance (P = 0.071) were improved in KOE mice over KO mice. Proteomic analysis indicated the protective role of ESM in muscle weakness and maintenance of muscle formation (>1.5-fold). Transcriptomic analysis revealed that ESM supplementation suppressed the LPS/IL1-mediated inhibition of RXR function pathway in the liver and downregulated the colonic mucosal expression of chemokines and Th cell differentiation-related markers (P < 0.01) by suppressing the upstream BATF pathway. Analysis of the intestinal microenvironment revealed that ESM supplementation ameliorated the microbial alpha diversity and the abundance of microbiota associated with the degree of inflammation (P < 0.05) and increased the level of total organic acids, particularly of SCFAs such as butyrate (2.3-fold), which could inhibit Th1 and Th17 production. CONCLUSIONS: ESM supplementation ameliorated the chief symptoms of cachexia, including anorexia, lean fat tissue mass, skeletal muscle wasting and reduced physical function. ESM also improved colon and skeletal muscle inflammation, lipid metabolism and microbial dysbiosis. These results along with the suppressed differentiation of Th cells could be associated with the beneficial intestinal microenvironment and, subsequently, attenuation of pre-cachexia. Our findings provide insights into the potential of ESM in complementary interventions for pre-cachexia prevention.
Asunto(s)
Caquexia , Cáscara de Huevo , Microbioma Gastrointestinal , Linfocitos T Colaboradores-Inductores , Animales , Caquexia/prevención & control , Diferenciación Celular , Dieta , Inflamación , Interleucina-10 , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , Linfocitos T Colaboradores-Inductores/citologíaRESUMEN
Background: We compared the temporal changes of immunoglobulin M (IgM), IgG, and IgA antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (N), spike 1 subunit (S1), and receptor-binding domain (RBD), and neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with coronavirus disease 2019 (COVID-19) to understand the humoral immunity in COVID-19 patients for developing drugs and vaccines for COVID-19. Methods: A total of five confirmed COVID-19 cases in Nissan Tamagawa Hospital in early August 2020 were recruited in this study. Using a fully automated chemiluminescence immunoassay analyzer, we measured the levels of IgG, IgA, and IgM against SARS-CoV-2 N, S1, and RBD and NAbs against SARS-CoV-2 in COVID-19 patients' sera acquired multiple times in individuals from 0 to 76 days after symptom onset. Results: IgG levels against SARS-CoV-2 structural proteins increased over time in all cases but IgM and IgA levels against SARS-CoV-2 showed different increasing trends among individuals in the early stage. In particular, we observed IgA increasing before IgG and IgM in some cases. The NAb levels were more than cut-off value in 4/5 COVID-19 patients some of whose antibodies against RBD did not exceed the cut-off value in the early stage. Furthermore, NAb levels against SARS-CoV-2 increased and kept above cut-off value more than around 70 days after symptom onset in all cases. Conclusion: Our findings indicate COVID-19 patients should be examined for IgG, IgA, and IgM against SARS-CoV-2 structural proteins and NAbs against SARS-CoV-2 to analyze the diversity of patients' immune mechanisms.
RESUMEN
Peripartum cardiomyopathy (PPCM) is a life-threatening heart failure occurring in the peripartum period. Although mal-angiogenesis, induced by the 16-kDa N-terminal prolactin fragment (16 K PRL), is involved in the pathogenesis, the effect of full-length prolactin (23 K PRL) is poorly understood. We transfected neonate rat cardiomyocytes with plasmids containing 23 K PRL or 16 K PRL in vitro and found that 23 K PRL, but not 16 K PRL, upregulated protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling, and hypoxia promoted this effect. During the perinatal period, cardiomyocyte-specific PERK homogenous knockout (CM-KO) mice showed PPCM phenotypes after consecutive deliveries. Downregulation of PERK or JAK/STAT signaling and upregulation of apoptosis were observed in CM-KO mouse hearts. Moreover, in bromocriptine-treated CM-KO mice, cardiac function did not improve and cardiomyocyte apoptosis was not suppressed during the peripartum period. These results demonstrate that interaction between 23 K PRL and PERK signaling is cardioprotective during the peripartum term.
Asunto(s)
Miocardio/metabolismo , Trastornos Puerperales/fisiopatología , Transducción de Señal , eIF-2 Quinasa/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Fenotipo , Ratas , Regulación hacia ArribaRESUMEN
BACKGROUND: The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI). METHODS: We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of ß2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling. RESULTS: In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. CONCLUSIONS: The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.
RESUMEN
Temporal and spatial colinear expression of the Hox genes determines the specification of positional identities during vertebrate development. Post-translational modifications of histones contribute to transcriptional regulation. Lysine demethylase 7A (Kdm7a) demethylates lysine 9 or 27 di-methylation of histone H3 (H3K9me2, H3K27me2) and participates in the transcriptional activation of developmental genes. However, the role of Kdm7a during mouse embryonic development remains to be elucidated. Herein, we show that Kdm7a-/- mouse exhibits an anterior homeotic transformation of the axial skeleton, including an increased number of presacral elements. Importantly, posterior Hox genes (caudally from Hox9) are specifically downregulated in the Kdm7a-/- embryo, which correlates with increased levels of H3K9me2, not H3K27me2. These observations suggest that Kdm7a controls the transcription of posterior Hox genes, likely via its demethylating activity, and thereby regulating the murine anterior-posterior development. Such epigenetic regulatory mechanisms may be harnessed for proper control of coordinate body patterning in vertebrates.
Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Histona Demetilasas con Dominio de Jumonji , Animales , Embrión de Mamíferos/metabolismo , Femenino , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Familia de Multigenes/genéticaRESUMEN
Oxidative/nitrosative stress is a major trigger of cardiac dysfunction, involving the unfolded protein response and mitochondrial dysfunction. Activation of nitric oxide-cyclic guanosine monophosphate-protein kinase G signaling by sildenafil improves cardiac mal-remodeling during pressure-overload-induced heart failure. Transcriptome analysis was conducted in failing hearts with or without sildenafil treatment. Protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) downstream signaling pathways, EIF2 and NRF2, were significantly altered. Although EIF2 signaling was suppressed, NRF2 signaling was upregulated, inhibiting the maturation of miR 24-3p through EGFR-mediated Ago2 phosphorylation. To study the effect of sildenafil on these pathways, we generated cardiac-specific PERK knockout mice. In these mice, sildenafil could not inhibit the maturations, the nuclear translocation of NRF2 was suppressed, and mitochondrial dysfunction advanced. Altogether, these results show that PERK-mediated suppression of miRNAs by sildenafil is vital for maintaining mitochondrial homeostasis through NRF2-mediated oxidative stress response.
RESUMEN
Autoreactive T cells are eliminated in the thymus to prevent autoimmunity by promiscuous expression of tissue-restricted self-antigens in medullary thymic epithelial cells. This expression is dependent on the transcription factor Fezf2, as well as the transcriptional regulator Aire, but the entire picture of the transcriptional program has been obscure. Here, we found that the chromatin remodeler Chd4, also called Mi-2ß, plays a key role in the self-antigen expression in medullary thymic epithelial cells. To maximize the diversity of self-antigen expression, Fezf2 and Aire utilized completely distinct transcriptional mechanisms, both of which were under the control of Chd4. Chd4 organized the promoter regions of Fezf2-dependent genes, while contributing to the Aire-mediated induction of self-antigens via super-enhancers. Mice deficient in Chd4 specifically in thymic epithelial cells exhibited autoimmune phenotypes, including T cell infiltration. Thus, Chd4 plays a critical role in integrating Fezf2- and Aire-mediated gene induction to establish central immune tolerance.
Asunto(s)
Autoantígenos/inmunología , Tolerancia Central/fisiología , Regulación de la Expresión Génica/inmunología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/inmunología , Animales , Autoantígenos/biosíntesis , ADN Helicasas/inmunología , ADN Helicasas/metabolismo , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteína AIRERESUMEN
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Asunto(s)
Células Endoteliales/inmunología , Histona Demetilasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , MicroARNs/genética , Animales , Adhesión Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilación , Ratones , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phenotypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from different organs are not well understood. RESULTS: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome-wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identified 3765 EC-specific enhancers, some of which were associated with disease-associated genetic variations. We also identified various candidate marker genes for each EC type. We found that the nine EC types can be divided into two subgroups, corresponding to those with upper-body origins and lower-body origins, based on their epigenomic landscape. Epigenomic variations were highly correlated with gene expression patterns, but also provided unique information. Most of the deferentially expressed genes and enhancers were cooperatively enriched in more than one EC type, suggesting that the distinct combinations of multiple genes play key roles in the diverse phenotypes across EC types. Notably, many homeobox genes were differentially expressed across EC types, and their expression was correlated with the relative position of each organ in the body. This reflects the developmental origins of ECs and their roles in angiogenesis, vasculogenesis and wound healing. CONCLUSIONS: This comprehensive analysis of epigenome characterization of EC types reveals diverse transcriptional regulation across human vascular systems. These datasets provide a valuable resource for understanding the vascular system and associated diseases.
Asunto(s)
Células Endoteliales/metabolismo , Epigenoma , Regulación de la Expresión Génica , Cromatina/metabolismo , Bases de Datos Genéticas , Células Endoteliales/citología , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Código de Histonas , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Análisis de Componente Principal , Regiones Promotoras GenéticasRESUMEN
Here, we find that human-induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM)-fated progenitors (CFPs) that express a tetraspanin family glycoprotein, CD82, almost exclusively differentiate into CMs both in vitro and in vivo. CD82 is transiently expressed in late-stage mesoderm cells during hiPSC differentiation. Purified CD82+ cells gave rise to CMs under nonspecific in vitro culture conditions with serum, as well as in vivo after transplantation to the subrenal space or injured hearts in mice, indicating that CD82 successfully marks CFPs. CD82 overexpression in mesoderm cells as well as in undifferentiated hiPSCs increased the secretion of exosomes containing ß-catenin and reduced nuclear ß-catenin protein, suggesting that CD82 is involved in fated restriction to CMs through Wnt signaling inhibition. This study may contribute to the understanding of CM differentiation mechanisms and to cardiac regeneration strategies.
Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Proteína Kangai-1/genética , Miocitos Cardíacos/metabolismo , Diferenciación Celular , HumanosRESUMEN
The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.
Asunto(s)
Células-Madre Neurales/efectos de la radiación , Radiación , Diferenciación Celular/efectos de la radiación , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de la radiación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuritas/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/efectos de la radiaciónRESUMEN
AIM: Selective PPARα modulators (SPPARMα) are under development for use as next-generation lipid lowering drugs. In the current study, to predict the pharmacological and toxicological effects of a novel SPPARMα K-877, comprehensive transcriptome analyses of K-877-treated primary human hepatocytes and mouse liver tissue were carried out. METHODS: Total RNA was extracted from the K-877 treated primary human hepatocytes and mouse liver and adopted to the transcriptome analysis. Using a cluster analysis, commonly and species specifically regulated genes were identified. Also, the profile of genes regulated by K-877 and fenofibrate were compared to examine the influence of different SPPARMα on the liver gene expression. RESULTS: Consequently, a cell-based transactivation assay showed that K-877 activates PPARα with much greater potency and selectivity than fenofibric acid, the active metabolite of clinically used fenofibrate. K-877 upregulates the expression of several fatty acid ß-oxidative genes in human hepatocytes and the mouse liver. Almost all genes up- or downregulated by K-877 treatment in the mouse liver were also regulated by fenofibrate treatment. In contrast, the K-877-regulated genes in the mouse liver were not affected by K-877 treatment in the Ppara-null mouse liver. Depending on the species, the peroxisomal biogenesis-related gene expression was robustly induced in the K-877-treated mouse liver, but not human hepatocytes, thus suggesting that the clinical dose of K-877 may not induce peroxisome proliferation or liver toxicity in humans. Notably, K-877 significantly induces the expression of clinically beneficial target genes (VLDLR, FGF21, ABCA1, MBL2, ENPEP) in human hepatocytes. CONCLUSION: These results indicate that changes in the gene expression induced by K-877 treatment are mainly mediated through PPARα activation. K-877 regulates the hepatic gene expression as a SPPARMα and thus may improve dyslipidemia as well as metabolic disorders, such as metabolic syndrome and type 2 diabetes, without untoward side effects.
Asunto(s)
Benzoxazoles/farmacología , Butiratos/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Análisis por Conglomerados , Fenofibrato/análogos & derivados , Fenofibrato/farmacología , Perfilación de la Expresión Génica , Humanos , Hipolipemiantes/farmacología , Hígado/patología , Ratones , Técnicas de Cultivo de TejidosRESUMEN
Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells.
Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Factores de Transcripción de Tipo Kruppel/biosíntesis , Quinolinas/farmacología , Cromatina/genética , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Elementos de Respuesta , Trombomodulina/biosíntesis , Trombomodulina/genéticaRESUMEN
BACKGROUND: Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. RESULTS: We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) ß/δ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARß/δ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. CONCLUSIONS: To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes.
Asunto(s)
Angiopoyetinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Elementos de Respuesta , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Hipoxia de la Célula , Cromatina/química , Cromatina/genética , Ensamble y Desensamble de Cromatina , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , PPAR delta/genética , PPAR-beta/genéticaRESUMEN
Hypoxia-inducible factor 1 (HIF1) is a master regulator of adaptive gene expression under hypoxia. However, a role for HIF1 in the epigenetic regulation remains unknown. Genome-wide analysis of HIF1 binding sites (chromatin immunoprecipitation [ChIP] with deep sequencing) of endothelial cells clarified that HIF1 mainly binds to the intergenic regions distal from transcriptional starting sites under both normoxia and hypoxia. Next, we examined the temporal profile of gene expression under hypoxic conditions by using DNA microarrays. We clarified that early hypoxia-responsive genes are functionally associated with glycolysis, including GLUT3 (SLC2A3). Acetylated lysine 27 of histone 3 covered the HIF1 binding sites, and HIF1 functioned as an enhancer of SLC2A3 by interaction with lysine (K)-specific demethylase 3A (KDM3A). Knockdown of HIF1α and KDM3A showed that glycolytic genes are regulated by both HIF1 and KDM3A and respond to hypoxia in a manner independent of cell type specificity. We elucidated that both the chromatin conformational structure and histone modification change under hypoxic conditions and enhance the expression of SLC2A3 based on the combined results of chromatin conformation capture (3C) and ChIP assays. KDM3A is recruited to the SLC2A3 locus in an HIF1-dependent manner and demethylates H3K9me2 so as to upregulate its expression. These findings provide novel insights into the interaction between HIF1 and KDM3A and also the epigenetic regulation of HIF1.