Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunol ; 36(6): 317-325, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38289706

RESUMEN

The cluster of differentiation 155 (CD155) is highly expressed on tumor cells and augments or inhibits the cytotoxic activities of natural killer (NK) cells and T cells through its receptor ligands DNAX accessory molecule 1 (DNAM-1) and T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), respectively. Although CD155 is heavily glycosylated, the role of glycosylation of CD155 in the cytotoxic activity of effector lymphocytes remains unknown. Here, we show that the N-linked glycosylation at residue 105 (N105 glycosylation) in the first Ig-like domain of CD155 is involved in the binding of CD155 to both DNAM-1 and TIGIT. The N105 glycosylation also plays an essential role to induce signaling in both DNAM-1 and TIGIT reporter cells. Moreover, we show that the N105 glycosylation of CD155 contributes preferentially to the DNAM-1-mediated activating signal over the TIGIT-mediated inhibitory signal in NK cells. Our results demonstrated the important role of the N105 glycosylation of CD155 in DNAM-1 and TIGIT functions and shed new light on the understanding of tumor immune responses.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T , Células Asesinas Naturales , Receptores Inmunológicos , Receptores Virales , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Glicosilación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Receptores Virales/metabolismo , Receptores Virales/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Unión Proteica
2.
Nat Commun ; 14(1): 7200, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938555

RESUMEN

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.


Asunto(s)
Antígenos Virales , Muromegalovirus , Animales , Ratones , Diferenciación Celular , Citomegalovirus , Células Asesinas Naturales , Fosforilación
3.
BMC Genomics ; 24(1): 597, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805453

RESUMEN

BACKGROUND: Transcription factors (TFs) exhibit heterogeneous DNA-binding specificities in individual cells and whole organisms under natural conditions, and de novo motif discovery usually provides multiple motifs, even from a single chromatin immunoprecipitation-sequencing (ChIP-seq) sample. Despite the accumulation of ChIP-seq data and ChIP-seq-derived motifs, the diversity of DNA-binding specificities across different TFs and cell types remains largely unexplored. RESULTS: Here, we applied MOCCS2, our k-mer-based motif discovery method, to a collection of human TF ChIP-seq samples across diverse TFs and cell types, and systematically computed profiles of TF-binding specificity scores for all k-mers. After quality control, we compiled a set of TF-binding specificity score profiles for 2,976 high-quality ChIP-seq samples, comprising 473 TFs and 398 cell types. Using these high-quality samples, we confirmed that the k-mer-based TF-binding specificity profiles reflected TF- or TF-family dependent DNA-binding specificities. We then compared the binding specificity scores of ChIP-seq samples with the same TFs but with different cell type classes and found that half of the analyzed TFs exhibited differences in DNA-binding specificities across cell type classes. Additionally, we devised a method to detect differentially bound k-mers between two ChIP-seq samples and detected k-mers exhibiting statistically significant differences in binding specificity scores. Moreover, we demonstrated that differences in the binding specificity scores between k-mers on the reference and alternative alleles could be used to predict the effect of variants on TF binding, as validated by in vitro and in vivo assay datasets. Finally, we demonstrated that binding specificity score differences can be used to interpret disease-associated non-coding single-nucleotide polymorphisms (SNPs) as TF-affecting SNPs and provide candidates responsible for TFs and cell types. CONCLUSIONS: Our study provides a basis for investigating the regulation of gene expression in a TF-, TF family-, or cell-type-dependent manner. Furthermore, our differential analysis of binding-specificity scores highlights noncoding disease-associated variants in humans.


Asunto(s)
Polimorfismo de Nucleótido Simple , Factores de Transcripción , Humanos , Sitios de Unión/genética , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN/metabolismo
4.
BMC Res Notes ; 15(1): 172, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562782

RESUMEN

OBJECTIVE: Portal mesenchymal cells induce the epithelial differentiation of the bile ducts in the developing liver via one of the Delta-Notch signaling components, JAGGED1. Although this differential induction is crucial for normal liver physiology as its genetic disorder (Alagille syndrome) causes jaundice, the molecular mechanism behind JAGGED1 expression remains unknown. Here, we searched for upstream regulatory transcription factors of JAGGED1 using an integrated bioinformatics method. RESULTS: According to the DoRothEA database, which integrates multiple lines of evidence on the relationship between transcription factors and their downstream target genes, three transcription factors were predicted to be upstream of JAGGED1: SLUG, SOX2, and EGR1. Among these, SLUG and EGR1 were enriched in ACTA2-expressing portal mesenchymal cells in two previously reported human fetal liver single-cell RNA-seq datasets. JAGGED1-expressing portal mesenchymal cells tended to express SLUG rather than EGR1, supporting that SLUG induced JAGGED1 expression. Together with the higher confidentiality of SLUG (DoRothEA level A) over EGR1 (DoRothEA level D), we concluded that SLUG was one of the most important candidate transcription factors upstream of JAGGED1. These results add mechanistic insights into the developmental biology of how portal mesenchymal cells support biliary development in the liver.


Asunto(s)
Síndrome de Alagille , Proteínas de la Membrana , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Hepatocitos , Humanos , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...