Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 649: 123653, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38036194

RESUMEN

This paper aims to develop smart hydrogels based on functionalized hyaluronic acid (HA) and PLGA-PEG-PLGA (PLGA,poly-(DL-lactic-co-glycolic acid); PEG,polyethylene glycol) for use as intraocular drug-delivery platforms. Anti-inflammatory agent dexamethasone-phosphate (0.2 %w/v) was the drug selected to load on the hydrogels. Initially, different ratios of HA-aldehyde (HA-CHO) and thiolated-HA (HA-SH) were assayed, selecting as optimal concentrations 2 and 3 % (w/v), respectively. Optimized HA hydrogel formulations presented fast degradation (8 days) and drug release (91.46 ± 3.80 % in 24 h), thus being suitable for short-term intravitreal treatments. Different technology-based strategies were adopted to accelerate PLGA-PEG-PLGA water solubility, e.g. substituting PEG1500 in synthesis for higher molecular weight PEG3000 or adding cryopreserving substances to the buffer dissolution. PEG1500 was chosen to continue optimization and the final PLGA-PEG-PLGA hydrogels (PPP1500) were dissolved in trehalose or mannitol carbonate buffer. These presented more sustained release (71.77 ± 1.59 % and 73.41 ± 0.83 % in 24 h, respectively) and slower degradation (>14 days). In vitro cytotoxicity studies in the retinal-pigmented epithelial cell line (RPE-1) demonstrated good tolerance (viability values > 90 %). PLGA-PEG-PLGA hydrogels are proposed as suitable candidates for long-term intravitreal treatments. Preliminary wound healing studies with PLGA-PEG-PLGA hydrogels suggested faster proliferation at 8 h than controls.


Asunto(s)
Oftalmopatías , Hidrogeles , Humanos , Polietilenglicoles , Sistemas de Liberación de Medicamentos , Poliésteres , Oftalmopatías/tratamiento farmacológico , Materiales Biocompatibles , Ácido Láctico
2.
Macromolecules ; 56(13): 5111-5116, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457021

RESUMEN

Copper-catalyzed controlled polymerization of acrylamide (AM) has always been a challenge, which typically exhibits low monomer conversion and broad molecular weight distribution (MWD) or requires complex/multistep reaction procedures, due to the highly active nature of the AM radical and its side reactions. To overcome the above challenges, herein, we report the successful synthesis of well-defined polyacrylamide (PAM) via a facile one-pot and one-step aqueous Cu(0)-mediated reversible-deactivation radical polymerization (RDRP). The results of this strategy show that strong deactivation control is the key for the controllability of AM RDRPs, which depends on the equilibria of polymerization and mutual conversion of different copper species. With the fast-propagating monomer AM, extra addition of CuII into the reaction system is an effective way to enhance deactivation. Based on this kinetically controlled strategy, well-defined PAMs with narrow molecular weight distributions (MWDs) and varied molecular weights (Mws) were successfully achieved.

3.
Front Bioeng Biotechnol ; 9: 742135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869257

RESUMEN

The rapidly increasing resistance of bacteria to currently approved antibiotic drugs makes surgical interventions and the treatment of bacterial infections increasingly difficult. In recent years, complementary strategies to classical antibiotic therapy have, therefore, gained importance. One of these strategies is the use of medicinal honey in the treatment of bacterially colonized wounds. One of the several bactericidal effects of honey is based on the in situ generation of hydrogen peroxide through the activity of the enzyme glucose oxidase. The strategy underlying this work is to mimic this antibacterial redox effect of honey in an injectable, biocompatible, and rapidly forming hydrogel. The hydrogel was obtained by thiol-ene click reaction between hyperbranched polyethylene glycol diacrylate (HB PEGDA), synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, and thiolated hyaluronic acid (HA-SH). After mixing 500 µL HB PEGDA (10%, w/w) and 500 µL HA-SH (1%, w/w) solutions, hydrogels formed in ∼60 s (HB PEGDA/HA-SH 10.0-1.0), as assessed by the tube inverting test. The HB PEGDA/HA-SH 10.0-1.0 hydrogel (200 µL) was resistant to in vitro dissolution in water for at least 64 days, absorbing up to 130 wt% of water. Varying glucose oxidase (GO) amounts (0-500 U/L) and constant glucose content (2.5 wt%) were loaded into HB PEGDA and HA-SH solutions, respectively, before hydrogel formation. Then, the release of H2O2 was evaluated through a colorimetric pertitanic acid assay. The GO content of 250 U/L was selected, allowing the formation of 10.8 ± 1.4 mmol H2O2/L hydrogel in 24 h, under static conditions. The cytocompatibility of HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with different GO activities (≤ 500 U/L) at a constant glucose amount (2.5 wt%) was investigated by in vitro assays at 24 h with L929 and HaCaT cell lines, according to DIN EN ISO 10993-5. The tests showed cytocompatibility for GO enzyme activity up to 250 U/L for both cell lines. The antibacterial activity of HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with increasing amounts of GO was demonstrated against various gram-positive bacteria (S. aureus and S. epidermidis), antibiotic-resistant gram-positive bacteria (MRSA and MRSE), gram-negative bacteria (P. aeruginosa, E. coli, and A. baumanii), and antibiotic-resistant gram-negative strains (P. aeruginosa and E. coli) using agar diffusion tests. For all gram-positive bacterial strains, increasing efficacy was measured with increasing GO activity. For the two P. aeruginosa strains, efficacy was shown only from an enzyme activity of 125 U/L and for E. coli and A. baumanii, efficacy was shown only from 250 U/L enzyme activity. HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with ≤250 U/L GO and 2.5 wt% glucose are promising formulations due to their fast-forming properties, cytocompatibility, and ability to produce antibacterial H2O2, warranting future investigations for bacterial infection treatment, such as wound care.

4.
Macromol Biosci ; 21(9): e2100079, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145758

RESUMEN

Cell therapies have great potential for the treatment of many different diseases, while the direct application of cells to the targeted location leads to limited therapeutic outcomes due to the low cell engraftment and cell survival rate. Injectable hydrogels have been developed to facilitate cell delivery; however, those currently developed hydrogel systems still face the limited cell survival rate. Here, an injectable and self-healable hydrogel is reported through the combination of hyperbranched PEG-based multi-hydrazide macro-crosslinker (HB-PEG-HDZ) and aldehyde-functionalized hyaluronic acid (HA-CHO), with gelatin added to increase the crosslinking density and cell activity. The hydrogels can be formed only in 7 s due to the relatively high content of the functional end groups. The reversible crosslinking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The hydrogels with gelatin exhibit relatively better mechanical properties and cell activity. The hydrogels can improve the survival, attachment, and engraftment of injected cells due to the rapid sol-gel transition, which can promote an enhanced regenerative response.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Hidrogeles , Supervivencia Celular , Gelatina/farmacología , Ácido Hialurónico/farmacología , Hidrogeles/farmacología
5.
Pharmaceutics ; 13(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562265

RESUMEN

The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31-34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtime.

6.
ACS Appl Mater Interfaces ; 12(35): 38918-38924, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805952

RESUMEN

The rapid development of additive manufacturing techniques in the field of tissue regeneration offers unprecedented success for artificial tissue and organ fabrication. However, some limitations still remain for current bioinks, such as the compromised cell viability after printing, the low cross-linking efficiency leading to poor printing resolution and speed due to the relatively slow gelation rate, and the requirement of external stimuli for gelation. To address these problems, herein, a biocompatible and printable instant gelation hydrogel system has been developed based on a designed hyperbranched poly(ethylene glycol) (PEG)-based multihydrazide macro-cross-linker (HB-PEG-HDZ) and an aldehyde-functionalized hyaluronic acid (HA-CHO). HB-PEG-HDZ is prepared by the postfunctionalization of hyperbranched PEG-based multivinyl macromer via thiol-ene chemistry. Owing to the high functional group density of HB-PEG-HDZ, the hydrogel can be formed instantly upon mixing the solutions of two components. The reversible cross-linking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The minimally toxic components and cross-linking chemistry allow the resulting hydrogel to be a biocompatible niche. Moreover, the fast sol-to-gel transition of the hydrogel, combining all of the advanced characteristics of this platform, protects the cells during the printing procedure, avoids their damage during extrusion, and improves the transplanted cell survival.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Tinta , Células 3T3 , Animales , Materiales Biocompatibles/farmacología , Técnicas de Cultivo de Célula/instrumentación , Supervivencia Celular , Ácido Hialurónico/química , Ratones , Polietilenglicoles/química , Impresión Tridimensional
7.
Biomacromolecules ; 21(6): 2229-2235, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32271548

RESUMEN

The conventional synthesis of methacryloyl hyaluronic acid (HA-MA) requires an extremely high amount of modification reagents, the organic solvents, and strenuous purification steps. Herein, a new green synthetic approach for the methacryloyl hyaluronic acid preparation with a tailorable substitution degree (SD) is reported, in which methacryloyl hydrazide is used as a more reactive reagent and only water is used as the solvent. The new method significantly reduces the amount of functionalization reagents (as low as only 0.3 equiv) and avoids the use of any organic solvents. The substitution degree can be tailored from 26% to 86% in a facile controllable manner. The new HA-MA (termed as HA-MA-H) can be UV-cross-linked to form a biocompatible hydrogel.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Materiales Biocompatibles , Reactivos de Enlaces Cruzados
8.
Nat Rev Chem ; 4(4): 194-212, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128047

RESUMEN

The construction of complex polymer architectures with well-defined topology, composition and functionality has been extensively explored as the molecular basis for the development of modern polymer materials. The unique reaction kinetics of free-radical polymerization leads to the concurrent formation of crosslinks between polymer chains and rings within an individual chain and, thus, free-radical (co)polymerization of multivinyl monomers provides a facile method to manipulate chain topology and functionality. Regulating the relative contribution of these intermolecular and intramolecular chain-propagation reactions is the key to the construction of architecturally complex polymers. This can be achieved through the design of new monomers or by spatially or kinetically controlling crosslinking reactions. These mechanisms enable the synthesis of various polymer architectures, including linear, cyclized, branched and star polymer chains, as well as crosslinked networks. In this Review, we highlight some of the contemporary experimental strategies to prepare complex polymer architectures using radical polymerization of multivinyl monomers. We also examine the recent development of characterization techniques for sub-chain connections in such complex macromolecules. Finally, we discuss how these crosslinking reactions have been engineered to generate advanced polymer materials for use in a variety of biomedical applications.

9.
Data Brief ; 28: 104861, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872000

RESUMEN

The data presented in this manuscript presents the characterisation spectra of three hyperbranched polymers as discussed in the paper "Folic Acid and Rhodamine Labelled pH Responsive Hyperbranched Polymers: synthesis, characterisation and cell uptake studies" [1]. Characterisation of polymers was performed via 1H Nuclear Magnetic Resonance (1H NMR) and Size Exclusion Chromatography (SEC). pH responsive characteristics were observed via Dynamic Light Scattering (DLS). The data for characterisation of folate conjugated hyperbranched polymer is presented as 1H NMR, Ultra Violet Visible (UV-VIS) spectra and DLS measurements. Further data is presented detailing the experiments for the synthesis of monomers 2-propyl acrylic acid (PAA) and disulfide diacrylate (DSDA), with the full synthesis of folic acid-poly (ethylene glycol) (PEG) linker, rhodamine B ethylenediamine linker and bioconjugation reactions also detailed.

10.
ACS Appl Mater Interfaces ; 10(46): 39494-39504, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30376290

RESUMEN

Synthetic reactive oxygen species (ROS)-responsive biomaterials have emerged as a useful platform for regulating critical aspects of ROS-induced pathologies and can improve such hostile microenvironments. Here, we report a series of new hyperbranched poly(ß-hydrazide ester) macromers (HB-PBHEs) with disulfide moieties synthesized via an "A2 + B4" Michael addition approach. The three-dimensional structure of HB-PBHEs with multiacrylate end groups endows the macromers with rapid gelation capabilities to form (1) injectable hydrogels via cross-linking with thiolated hyaluronic acid and (2) robust UV-cross-linked hydrogels. The disulfide-containing macromers and hydrogels exhibit H2O2-responsive degradation compared with the counterparts synthesized by a dihydrazide monomer without disulfide moieties. The cell viability under a high ROS environment can be well-maintained under the protection of the disulfide containing hydrogels.


Asunto(s)
Antioxidantes/química , Azidas/química , Ésteres/química , Hidrogeles/química , Células 3T3 , Adipocitos/citología , Animales , Compuestos de Bifenilo/química , Supervivencia Celular , Técnicas de Cocultivo , ADN/química , Disulfuros/química , Depuradores de Radicales Libres/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Picratos/química , Conformación Proteica , Especies Reactivas de Oxígeno/química , Reología , Espectrofotometría Ultravioleta , Células Madre/citología , Ingeniería de Tejidos
11.
Acta Biomater ; 75: 63-74, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29803782

RESUMEN

The injectable hydrogel with desirable biocompatibility and tunable properties can improve the efficacy of stem cell-based therapy. However, the development of injectable hydrogel remains a great challenge due to the restriction of crosslinking efficiency, mechanical properties, and potential toxicity. Here, we report that a new injectable hydrogel system was fabricated from hyperbranched multi-acrylated poly(ethylene glycol) macromers (HP-PEGs) and thiolated hyaluronic acid (HA-SH) and used as a stem cell delivery and retention platform. The new HP-PEGs were synthesized via in situ reversible addition fragmentation chain transfer (RAFT) polymerization using an FDA approved anti-alcoholic drug-Disulfiram (DS) as the RAFT agent precursor. HP-PEGs can form injectable hydrogels with HA-SH rapidly via thiol-ene click reaction under physiological conditions. The hydrogels exhibited stable mechanical properties, non-swelling and anti-fouling properties. Hydrogels encapsulating adipose-derived stem cells (ADSCs) have demonstrated promising regenerative capabilities such as the maintenance of ADSCs' stemness and secretion abilities. The ADSCs embedded hydrogels were tested on the treatment of diabetic wound in a diabetic murine animal model, showing enhanced wound healing. STATEMENT OF SIGNIFICANCE: Diabetic wounds, which are a severe type of diabetes, have become one of the most serious clinical problems. There is a great promise in the delivery of adipose stem cells into wound sites using injectable hydrogels that can improve diabetic wound healing. Due to the biocompatibility of poly(ethylene glycol) diacrylate (PEGDA), we developed an in situ RAFT polymerization approach using anti-alcoholic drug-Disulfiram (DS) as a RAFT agent precursor to achieve hyperbranched PEGDA (HP-PEG). HP-PEG can form an injectable hydrogel by crosslinking with thiolated hyaluronic acid (HA-SH). ADSCs can maintain their regenerative ability and be delivered into the wound sites. Hence, diabetic wound healing process was remarkably promoted, including inhibition of inflammation, enhanced angiogenesis and re-epithelialization. Taken together, the ADSCs-seeded injectable hydrogel may be a promising candidate for diabetic wound treatment.


Asunto(s)
Células Inmovilizadas , Angiopatías Diabéticas , Hidrogeles , Polietilenglicoles , Trasplante de Células Madre/métodos , Células Madre , Cicatrización de Heridas , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Células Inmovilizadas/trasplante , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/terapia , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Células Madre/patología
12.
Polymers (Basel) ; 9(9)2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30965746

RESUMEN

Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs) via one-pot reversible addition-fragmentation chain transfer (RAFT) copolymerisation of poly(ethylene glycol)methyl ether methacrylate (PEGMEMA, Mn = 475 g/mol), poly(propylene glycol)methacrylate (PPGMA, Mn = 375 g/mol), and disulfide diacrylate (DSDA) using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Differential Scanning Calorimetry (DSC) was used to determine lower critical solution temperatures (LCSTs) of these copolymers, which are in the range of 17⁻57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible) and crosslinkable (via thiol-ene click chemistry) properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.

13.
ACS Appl Mater Interfaces ; 8(40): 26648-26656, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27636330

RESUMEN

A multifunctional branched copolymer was synthesized by Reversible Addition-Fragmentation Chain Transfer polymerization (RAFT) of poly(ethylene glycol) diacrylate (PEGDA Mn = 575) and poly(ethylene glycol) methyl methacrylate (PEGMEMA Mn = 500) at a feed molar ratio of 50:50. Proton nuclear magnetic resonance spectroscopy (1H NMR) confirmed a hyperbranched molecular structure and a high degree of vinyl functionality. An in situ cross-linkable hydrogel system was generated via a "click" thiol-ene-type Michael addition reaction of vinyl functional groups from this PEGDA/PEGMEMA copolymer system in combination with thiol-modified hyaluronic acid. Furthermore, encapsulation of antimicrobial silver sulfadiazine (SSD) into the copolymer system was conducted to create an advanced antimicrobial wound care dressing. This hydrogel demonstrated a sustained antibacterial activity against the bacterial strains Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli in comparison to the direct topical application of SSD. In addition, in vitro toxicology evaluations demonstrated that this hydrogel-with low concentrations of encapsulated SSD-supported the survival of embedded human adipose derived stem cells (hADSCs) and inhibited growth of the aforementioned pathogens. Here we demonstrate that this hydrogel encapsulated with a low concentration (1.0% w/v) of SSD can be utilized as a carrier system for stem cells with the ability to inhibit growth of pathogens and without adverse effects on hADSCs.


Asunto(s)
Polietilenglicoles/química , Antibacterianos , Humanos , Hidrogeles , Plata , Sulfadiazina
14.
Chem Commun (Camb) ; 48(25): 3085-7, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22343904

RESUMEN

We explore a kinetically controlled strategy to suppress the gelation in the homopolymerization of multi-vinyl monomers (MVMs) via RAFT polymerization. We report the generation of 3D single cyclized polymer structures from the RAFT process, which significantly contradicts the classic F-S theory. This approach enables synthesis of a new generation of nanosize macromolecular architectures.


Asunto(s)
Polimerizacion , Compuestos de Vinilo/química , Ciclización , Estructura Molecular , Nanoestructuras
15.
Acta Biomater ; 8(1): 61-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21855663

RESUMEN

The porous structure of a scaffold determines the ability of bone to regenerate within this environment. In situations where the scaffold is required to provide mechanical function, balance must be achieved between optimizing porosity and maximizing mechanical strength. Supercritical CO(2) foaming can produce open-cell, interconnected structures in a low-temperature, solvent-free process. In this work, we report on foams of varying structural and mechanical properties fabricated from different molecular weights of poly(DL-lactic acid) P(DL)LA (57, 25 and 15 kDa) and by varying the depressurization rate. Rapid depressurization rates produced scaffolds with homogeneous pore distributions and some closed pores. Decreasing the depressurization rate produced scaffolds with wider pore size distributions and larger, more interconnected pores. In compressive testing, scaffolds produced from 57 kDa P(DL)LA exhibited typical stress-strain curves for elastomeric open-cell foams whereas scaffolds fabricated from 25 and 15 kDa P(DL)LA behaved as brittle foams. The structural and mechanical properties of scaffolds produced from 57 kDa P(DL)LA by scCO(2) ensure that these scaffolds are suitable for potential applications in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Dióxido de Carbono/química , Ingeniería de Tejidos/instrumentación , Materiales Biocompatibles/metabolismo , Huesos/química , Huesos/metabolismo , Fuerza Compresiva , Elasticidad , Ácido Láctico/química , Ácido Láctico/metabolismo , Ensayo de Materiales , Peso Molecular , Poliésteres , Polímeros/química , Polímeros/metabolismo , Porosidad , Ingeniería de Tejidos/métodos
16.
Macromol Rapid Commun ; 33(2): 120-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22139810

RESUMEN

A well-defined poly(ethylene glycol) based hyperbranched thermoresponsive copolymer with high content of acrylate vinyl groups was synthesized via a "one-pot and one-step" deactivation enhanced atom transfer radical polymerization approach, which provided an injectable and in situ crosslinkable system via Michael-type thiol-ene reaction with a thiol-modified hyaluronan biopolymer. The hyperbranched structure, molecular weight, and percentage of vinyl content of the copolymer were characterized by gel permeation chromatography and (1)H NMR. The lower critical solution temperature of this copolymer is close to body temperature, which can result in a rapid thermal gelation at 37 °C. The scanning electron microscopy analysis of crosslinked hydrogel showed the network formation with porous structure, and 3D cell culture study demonstrated the good cell viability after the cells were embedded inside the hydrogel. This injectable and in situ crosslinking hybrid hydrogel system offers great promise as a new class of hybrid biomaterials for tissue engineering.


Asunto(s)
Materiales Biocompatibles/síntesis química , Química Clic/métodos , Hidrogeles/síntesis química , Polietilenglicoles/química , Materiales Biocompatibles/química , Hidrogeles/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Porosidad , Ingeniería de Tejidos
17.
J Mater Sci Mater Med ; 23(1): 25-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22143908

RESUMEN

Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an 'one pot and one step' in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, M(n) = 258 g mol(-1)), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n )= 475 g mol(-1)) and (2-methoxyethoxy) ethyl methacrylate (MEO(2)MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models.


Asunto(s)
Ácido Hialurónico/química , Hidrogeles , Polímeros/química , Animales , Células Cultivadas , Reactivos de Enlaces Cruzados/química , Calor , Conejos
18.
Chem Commun (Camb) ; 46(26): 4698-700, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20514386

RESUMEN

A hyperbranched 2-(dimethylamino)ethyl methacrylate (DMAEMA) based polymer has been synthesised by a one-pot in situ deactivation enhanced atom transfer radical polymerisation (DE-ATRP); it exhibits much higher transfection ability than linear poly(DMAEMA) and is comparable to the well known branched poly(ethylene imine) (PEI) and the SuperFect dendrimer but with lower cytotoxicity.


Asunto(s)
Metacrilatos/química , Nylons/química , Transfección , Células 3T3 , Animales , Dendrímeros/química , Iminas/química , Ratones , Plásmidos/genética , Plásmidos/metabolismo , Polietilenos/química
19.
Biomacromolecules ; 10(10): 2895-903, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19746967

RESUMEN

Photo-cross-linked hydrogels from thermoresponsive polymers can be used as advanced injectable biomaterials via a combination of physical interaction (in situ thermal gelation) and covalent cross-links (in situ photopolymerization). This can lead to gels with significantly enhanced mechanical properties compared to non-photo-cross-linked thermoresponsive hydrogels. Moreover, the thermally phase-separated gels have attractive advantages over non-thermoresponsive gels because thermal gelation upon injection allows easy handling and holds the shape of the gels prior to photopolymerization. In this study, water-soluble thermoresponsive copolymers containing multiple methacrylate groups were synthesized via one-step deactivation enhanced atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n) = 475), poly(propylene glycol) methacrylate (PPGMA, M(n) = 375), and ethylene glycol dimethacrylate (EGDMA) and were used to form covalent cross-linked hydrogels by photopolymerization. The cross-linking density was found to have a significant influence on the mechanical and swelling properties of the photo-cross-linked gels. Release studies using lysozyme as a model protein demonstrated a sustained release profile that varied dependent on the copolymer composition, cross-linking density, and the temperature. Mouse C2C12 myoblast cells were cultured in the presence of the copolymers at concentrations up to 1 mg/mL. It was found that the majority of the cells remained viable, as assessed by Alamar Blue, lactate dehydrogenase (LDH), and Live/Dead cell viability/cytotoxicity assays. These studies demonstrate that thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers offer potential as in situ photopolymerizable materials for tissue engineering and drug delivery applications through a combination of facile synthesis, enhanced mechanical properties, tunable cross-linking density, low cytotoxicity, and accessible functionality for further structure modifications.


Asunto(s)
Resinas Acrílicas/química , Hidrogeles/química , Metacrilatos/química , Proteínas/química , Microscopía Electrónica de Rastreo , Fotoquímica , Reología , Espectrofotometría Ultravioleta
20.
Biomacromolecules ; 10(4): 822-8, 2009 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-19226106

RESUMEN

Thermoresponsive and photocrosslinkable polymers can be used as injectable scaffolds in tissue engineering to yield gels in situ with enhanced mechanical properties and stability. They allow easy handling and hold their shapes prior to photopolymerization for clinical practice. Here we report a novel copolymer with both thermoresponsive and photocrosslinkable properties via a facile one-step deactivation enhanced atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methylacrylate (PEGMEMA, M(n) = 475) and poly(propylene glycol) methacrylate (PPGMA, M(n) = 375) as monofunctional vinyl monomers and up to 30% of ethylene glycol dimethacrylate (EGDMA) as multifunctional vinyl monomer. The resultant PEGMEMA-PPGMA-EGDMA copolymers have been characterized by gel permeation chromatography (GPC) and 1H NMR analysis, which demonstrate their multivinyl functionality and hyperbranched structures. These water-soluble copolymers show lower critical solution temperature (LCST) behavior at 32 degrees C, which is comparable to poly(N-isopropylacrylamide) (PNIPAM). The copolymers can also be cross-linked by photopolymerization through their multivinyl functional groups. Rheological studies clearly demonstrate that the photocrosslinked gels formed at a temperature above the LCST have higher storage moduli than those prepared at a temperature below the LCST. Moreover, the cross-linking density of the gels can be tuned to tailor their porous structures and mechanical properties by adjusting the composition and concentration of the copolymers. Hydrogels with a broad range of storage moduli from 10 to 400 kPa have been produced.


Asunto(s)
Resinas Acrílicas/síntesis química , Resinas Acrílicas/farmacología , Hidrogeles/química , Metacrilatos/química , Éteres Metílicos/química , Polímeros/síntesis química , Polímeros/farmacología , Resinas Acrílicas/química , Reactivos de Enlaces Cruzados/farmacología , Ensayo de Materiales , Fotoquímica , Polímeros/química , Estrés Mecánico , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA