Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742194

RESUMEN

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Ratones Transgénicos , Ovariectomía , Animales , Estradiol/farmacología , Femenino , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Ratones , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Conducta Animal/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
2.
Magn Reson Imaging ; 109: 264-270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522624

RESUMEN

Proton exchange underpins essential mechanisms in diverse MR imaging contrasts. Omega plots have proven effective in mapping proton exchange rates (kex) in live human brains, enabling the differentiation of MS lesion activities and characterization of ischemic stroke. However, Omega plots require extended saturation durations (typically 5 to 10 s), resulting in high specific absorption rates (SAR) that can hinder clinical feasibility. In this study, we introduce a novel kex mapping approach, named induced Saturation Transfer Recovery Steady-States (iSTRESS). iSTRESS integrates an excitation flip angle pulse prior to chemical exchange saturation transfer (CEST) saturation, effectively aligning the magnetization with its steady-state value. This innovation reduces saturation times and mitigates SAR concerns. The formula for iSTRESS-based kex quantification was derived theoretically, involving two measurements with distinct excitation flip angles and saturation B1 values. Bloch-McConnell simulations confirmed that iSTRESS-based kex values closely matched input values (R2 > 0.99). An iSTRESS MRI sequence was implemented on a 9.4 T preclinical MRI, imaging protein phantoms with pH values ranging from 6.2 to 7.4 (n = 4). Z-spectra were acquired using excitation flip angles of 30° and 60°, followed by CEST saturation at powers of 30 and 120 Hz respectively, with a total saturation time of <1 s, resulting in two iSTRESS states for kex mapping. kex maps derived from the phantom study exhibited a linear correlation (R2 > 0.99) with Omega plot results. The developed iSTRESS method allows for kex quantification with significantly reduced saturation times, effectively minimizing SAR concerns.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Concentración de Iones de Hidrógeno , Medios de Contraste , Fantasmas de Imagen
3.
J Alzheimers Dis ; 97(4): 1629-1639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306049

RESUMEN

APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-ß peptide (Aß) (EFAD) to evaluate the effect of APOE2 dosage on Aß pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aß42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aß42. These findings offer initial insights on the impact of APOE2 on Aß pathology.


Asunto(s)
Enfermedad de Alzheimer , Hiperlipidemias , Ratones , Animales , Apolipoproteína E2/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E3 , Ratones Endogámicos , Hipocampo/patología , Hiperlipidemias/genética
4.
J Neuroimmunol ; 388: 578309, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335781

RESUMEN

Blood-brain barrier (BBB) permeability can cause neuroinflammation and cognitive impairment. Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on the BBB and consequent neurological outcomes in respiratory viral infections is unknown. We used Cav-1-deficient mice with genetically encoded fluorescent endothelial tight junctions to determine how Cav-1 influences BBB permeability, neuroinflammation, and cognitive impairment following respiratory infection with mouse adapted (MA10) SARS-CoV-2 as a model for COVID-19. We found that SARS-CoV-2 infection increased brain endothelial Cav-1 and increased transcellular BBB permeability to albumin, decreased paracellular BBB Claudin-5 tight junctions, and caused T lymphocyte infiltration in the hippocampus, a region important for learning and memory. Concordantly, we observed learning and memory deficits in SARS-CoV-2 infected mice. Importantly, genetic deficiency in Cav-1 attenuated transcellular BBB permeability and paracellular BBB tight junction losses, T lymphocyte infiltration, and gliosis induced by SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results establish the contribution of Cav-1 to BBB permeability and behavioral dysfunction induced by SARS-CoV-2 neuroinflammation.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Disfunción Cognitiva/etiología , COVID-19/complicaciones , Trastornos de la Memoria/etiología , Enfermedades Neuroinflamatorias , Permeabilidad , SARS-CoV-2/metabolismo
5.
Brain ; 147(5): 1636-1643, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38306655

RESUMEN

Respiratory infection with SARS-CoV-2 causes systemic vascular inflammation and cognitive impairment. We sought to identify the underlying mechanisms mediating cerebrovascular dysfunction and inflammation following mild respiratory SARS-CoV-2 infection. To this end, we performed unbiased transcriptional analysis to identify brain endothelial cell signalling pathways dysregulated by mouse adapted SARS-CoV-2 MA10 in aged immunocompetent C57Bl/6 mice in vivo. This analysis revealed significant suppression of Wnt/ß-catenin signalling, a critical regulator of blood-brain barrier (BBB) integrity. We therefore hypothesized that enhancing cerebrovascular Wnt/ß-catenin activity would offer protection against BBB permeability, neuroinflammation, and neurological signs in acute infection. Indeed, we found that delivery of cerebrovascular-targeted, engineered Wnt7a ligands protected BBB integrity, reduced T-cell infiltration of the brain, and reduced microglial activation in SARS-CoV-2 infection. Importantly, this strategy also mitigated SARS-CoV-2 induced deficits in the novel object recognition assay for learning and memory and the pole descent task for bradykinesia. These observations suggest that enhancement of Wnt/ß-catenin signalling or its downstream effectors could be potential interventional strategies for restoring cognitive health following viral infections.


Asunto(s)
Barrera Hematoencefálica , COVID-19 , Disfunción Cognitiva , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Wnt , Animales , Barrera Hematoencefálica/metabolismo , COVID-19/complicaciones , Ratones , Proteínas Wnt/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Vía de Señalización Wnt/fisiología , Ligandos , SARS-CoV-2 , Masculino , Encéfalo/metabolismo
6.
Mol Neurobiol ; 61(1): 120-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37589833

RESUMEN

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Angiotensina II/farmacología , Apolipoproteína E3/genética , Ratones Transgénicos , Apolipoproteínas E/genética , Enfermedad de Alzheimer/metabolismo , Potenciación a Largo Plazo
7.
Front Aging Neurosci ; 15: 1279343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020764

RESUMEN

Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aß) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aß pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aß42 overproduction. We assessed Aß levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aß deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.

8.
Alzheimers Res Ther ; 15(1): 181, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858252

RESUMEN

BACKGROUND: APOE genotype is the greatest genetic risk factor for sporadic Alzheimer's disease (AD). APOE4 increases AD risk up to 12-fold compared to APOE3, an effect that is greater in females. Evidence suggests that one-way APOE could modulate AD risk and progression through neuroinflammation. Indeed, APOE4 is associated with higher glial activation and cytokine levels in AD patients and mice. Therefore, identifying pathways that contribute to APOE4-associated neuroinflammation is an important approach for understanding and treating AD. Human and in vivo evidence suggests that TLR4, one of the key receptors involved in the innate immune system, could be involved in APOE-modulated neuroinflammation. Consistent with that idea, we previously demonstrated that the TLR4 antagonist IAXO-101 can reduce LPS- and Aß-induced cytokine secretion in APOE4 glial cultures. Therefore, the goal of this study was to advance these findings and determine whether IAXO-101 can modulate neuroinflammation, Aß pathology, and behavior in mice that express APOE4. METHODS: We used mice that express five familial AD mutations and human APOE3 (E3FAD) or APOE4 (E4FAD). Female and male E4FAD mice and female E3FAD mice were treated with vehicle or IAXO-101 in two treatment paradigms: prevention from 4 to 6 months of age or reversal from 6 to 7 months of age. Learning and memory were assessed by modified Morris water maze. Aß deposition, fibrillar amyloid deposition, astrogliosis, and microgliosis were assessed by immunohistochemistry. Soluble levels of Aß and apoE, insoluble levels of apoE and Aß, and IL-1ß were measured by ELISA. RESULTS: IAXO-101 treatment resulted in lower Iba-1 coverage, lower number of reactive microglia, and improved memory in female E4FAD mice in both prevention and reversal paradigms. IAXO-101-treated male E4FAD mice also had lower Iba-1 coverage and reactivity in the RVS paradigm, but there was no effect on behavior. There was also no effect of IAXO-101 treatment on neuroinflammation and behavior in female E3FAD mice. CONCLUSION: Our data supports that TLR4 is a potential mechanistic therapeutic target for modulating neuroinflammation and cognition in APOE4 females.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Citocinas , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/uso terapéutico
9.
Arterioscler Thromb Vasc Biol ; 43(10): 1952-1966, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650329

RESUMEN

BACKGROUND: Specialized brain endothelial cells and human APOE3 are independently important for neurovascular function, yet whether APOE3 expression by endothelial cells contributes to brain function is currently unknown. In the present study, we determined whether the loss of endothelial cell APOE3 impacts brain vascular and neural function. METHODS: We developed APOE3fl/fl/Cdh5(PAC)-CreERT2+/- (APOE3Cre+/-) and APOE3fl/fl/Cdh5(PAC)-CreERT2-/- (APOE3Cre-/-, control) mice and induced endothelial cell APOE3 knockdown with tamoxifen at ≈4 to 5 weeks of age. Neurovascular and neuronal function were evaluated by biochemistry, immunohistochemistry, behavioral testing, and electrophysiology at 9 months of age. RESULTS: We found that the loss of endothelial APOE3 expression was sufficient to cause neurovascular dysfunction including higher permeability and lower vessel coverage in tandem with deficits in spatial memory and fear memory extinction and a disruption of cortical excitatory/inhibitory balance. CONCLUSIONS: Our data collectively support the novel concept that endothelial APOE3 plays a critical role in the regulation of the neurovasculature, neural circuit function, and behavior.


Asunto(s)
Encéfalo , Células Endoteliales , Ratones , Humanos , Animales , Apolipoproteína E3/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Apolipoproteína E4
10.
Res Sq ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292788

RESUMEN

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.

11.
Front Neurosci ; 15: 690410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276296

RESUMEN

Compared with APOE3, APOE4 is associated with greater age-related cognitive decline and higher risk of neurodegenerative disorders. Therefore, development of supplements that target APOE genotype-modulated processes could provide a great benefit for the aging population. Evidence suggests a link between APOE genotype and docosahexaenoic acid (DHA); however, clinical studies with current DHA supplements have produced negative results in dementia. The lack of beneficial effects with current DHA supplements may be related to limited bioavailability, as the optimal form of DHA for brain uptake is lysophosphatidylcholine (LPC)-DHA. We previously developed a method to enrich the LPC-DHA content of krill oil through lipase treatment (LT-krill oil), which resulted in fivefold higher enrichment in brain DHA levels in wild-type mice compared with untreated krill oil. Here, we evaluated the effect of a control diet, diet containing krill oil, or a diet containing LT-krill oil in APOE3- and APOE4-targeted replacement mice (APOE-TR mice; treated from 4 to 12 months of age). We found that DHA levels in the plasma and hippocampus are lower in APOE4-TR mice and that LT-krill oil increased DHA levels in the plasma and hippocampus of both APOE3- and APOE4-TR mice. In APOE4-TR mice, LT-krill oil treatment resulted in higher levels of the synaptic vesicle protein SV2A and improved performance on the novel object recognition test. In conclusion, our data demonstrate that LPC-DHA/EPA-enriched krill oil can increase brain DHA and improve memory-relevant behavior in mice that express APOE4. Therefore, long-term use of LT-krill oil supplements may on some level protect against age-related neurodegeneration.

12.
Front Cell Dev Biol ; 9: 668296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178992

RESUMEN

Reports of APOE4-associated neurovascular dysfunction during aging and in neurodegenerative disorders has led to ongoing research to identify underlying mechanisms. In this study, we focused on whether the APOE genotype of brain endothelial cells modulates their own phenotype. We utilized a modified primary mouse brain endothelial cell isolation protocol that enabled us to perform experiments without subculture. Through initial characterization we found, that compared to APOE3, APOE4 brain endothelial cells produce less apolipoprotein E (apoE) and have altered metabolic and inflammatory gene expression profiles. Further analysis revealed APOE4 brain endothelial cultures have higher preference for oxidative phosphorylation over glycolysis and, accordingly, higher markers of mitochondrial activity. Mitochondrial activity generates reactive oxygen species, and, with APOE4, there were higher mitochondrial superoxide levels, lower levels of antioxidants related to heme and glutathione and higher markers/outcomes of oxidative damage to proteins and lipids. In parallel, or resulting from reactive oxygen species, there was greater inflammation in APOE4 brain endothelial cells including higher chemokine levels and immune cell adhesion under basal conditions and after low-dose lipopolysaccharide (LPS) treatment. In addition, paracellular permeability was higher in APOE4 brain endothelial cells in basal conditions and after high-dose LPS treatment. Finally, we found that a nuclear receptor Rev-Erb agonist, SR9009, improved functional metabolic markers, lowered inflammation and modulated paracellular permeability at baseline and following LPS treatment in APOE4 brain endothelial cells. Together, our data suggest that autocrine signaling of apoE in brain endothelial cells represents a novel cellular mechanism for how APOE regulates neurovascular function.

13.
Front Cell Dev Biol ; 9: 656521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796539

RESUMEN

Seizures are emerging as a common symptom in Alzheimer's disease (AD) patients, often attributed to high levels of amyloid ß (Aß). However, the extent that AD disease risk factors modulate seizure activity in aging and AD-relevant contexts is unclear. APOE4 is the greatest genetic risk factor for AD and has been linked to seizures independent of AD and Aß. The goal of the present study was to evaluate the role of APOE genotype in modulating seizures in the absence and presence of high Aß levels in vivo. To achieve this goal, we utilized EFAD mice, which express human APOE3 or APOE4 in the absence (EFAD-) or presence (EFAD+) of familial AD mutations that result in Aß overproduction. When quantified during cage change day, we found that unlike APOE3, APOE4 is associated with tonic-clonic seizures. Interestingly, there were lower tonic-clonic seizures in E4FAD+ mice compared to E4FAD- mice. Restraint handing and auditory stimuli failed to recapitulate the tonic-clonic phenotype in EFAD mice that express APOE4. However, after chemical-induction with pentylenetetrazole, there was a higher incidence of tonic-clonic seizures with APOE4 compared to APOE3. Interestingly, the distribution of seizures to the tonic-clonic phenotype was higher with FAD mutations. These data support that APOE4 is associated with higher tonic-clonic seizures in vivo, and that FAD mutations impact tonic-clonic seizures in a paradigm dependent manner.

14.
Front Neurosci ; 15: 628403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642985

RESUMEN

Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer's disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aß levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD-) or presence (E4FAD+) of high Aß levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD- and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD- and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aß levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.

15.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508430

RESUMEN

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Asunto(s)
Galactosilceramidasa/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patología , Sustancia Blanca/patología , Animales , Animales Recién Nacidos , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Fibrinógeno/metabolismo , Galactosilceramidasa/metabolismo , Vectores Genéticos/administración & dosificación , Leucodistrofia de Células Globoides/sangre , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Ratones , Recurrencia
16.
Prog Mol Biol Transl Sci ; 177: 1-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453936

RESUMEN

Over the last several decades, a number of mouse models have been generated for mechanistic and preclinical therapeutic research on Alzheimer's disease (AD)-like behavioral impairments and pathology. Acceptance or rejection of these models by the scientific community is playing a prominent role in how research findings are viewed and whether grants get funded and manuscripts published. The question of whether models are useful has become an exceptionally contentious issue. Much time and effort have gone into investigators debating comments such as "there are no mouse models of AD," "…nice work but needs to be tested in another mouse model," or "only data from humans is valid." This leads to extensive written justifications for the choice of a model in grant applications, to the point of almost apologizing for the use of models. These debates also lead to initiatives to create new, better models of AD without consideration of what "better" may mean in this context. On the "other side," an argument supporting the use of mouse models is one cannot dissect a biological mechanism in postmortem human tissue. In this chapter, we examine issues that we believe must be addressed if in vivo AD research is to progress. We opine that it is not the models that are the issue, but rather a lack of understanding the aspects of AD-like pathology the models were designed to mimic. The goal here is to improve the utilization of models to address critical issues, not to offer a critique of existing models or make endorsements.


Asunto(s)
Enfermedad de Alzheimer , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas tau
17.
Heliyon ; 6(5): e03919, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32478184

RESUMEN

APOE4 is a major genetic risk factor for Alzheimer's disease and high amyloid-ß (Aß) levels in the brain are a pathological hallmark of the disease. However, the contribution of specific APOE-modulated Aß-dependent and Aß-independent functions to cognitive decline remain unclear. Increasing evidence supports a role of APOE in modulating cerebrovascular function, however whether ameliorating this dysfunction can improve behavioral function is still under debate. We have previously demonstrated that systemic epidermal growth factor (EGF) treatment, which is important for vascular function, at early stages of pathology (treatment from 6 to 8 months) is beneficial for recognition and spatial memory and cerebrovascular function in female mice that express APOE4. These data raise the important question of whether EGF can improve APOE4-associated cerebrovascular and behavioral dysfunction when treatment is initiated at an age of advanced pathology. Positive findings would support the development of therapies that target cerebrovascular dysfunction associated with APOE4 in aging and AD in individuals with advanced cognitive impairment. Therefore, in this study female mice that express APOE4 in the absence (E4FAD- mice) or presence (E4FAD+ mice) of Aß overproduction were treated from 8 to 10 months of age systemically with EGF. EGF treatment mitigated behavioral dysfunction in recognition memory and spatial learning and improved hippocampal neuronal function in both E4FAD+ and E4FAD- mice, suggesting that EGF treatment improves Aß-independent APOE4-associated deficits. The beneficial effects of EGF treatment on behavior occurred in tandem with improved markers of cerebrovascular function, including lower levels of fibrinogen, lower permeability when assessed by MRI and higher percent area coverage of laminin and CD31 in the hippocampus. These data suggest a mechanistic link among EGF signaling, cerebrovascular function and APOE4-associated behavioral deficits in mice with advanced AD-relevant pathology.

18.
Mol Nutr Food Res ; 64(12): e2000059, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304625

RESUMEN

SCOPE: Currently available omega-3 fatty acid supplements do not enrich the docosahexaenoic acid (DHA) of the adult brain because they are absorbed as triacylglycerol, whereas the transporter at the blood brain barrier requires lysophosphatidylcholine (LPC)-DHA. The hypothesis that treatment of krill oil (KO), which contains DHA/eicosapentaenoic acid (EPA) at the SN2 position of phosphatidylcholine, with SN1-specific lipase will generate LPC-DHA/EPA and which can be absorbed intact and transported into the brain, is tested. METHODS: KO and fish oil (FO) are treated with Mucor meihei lipase, incorporated into AIN 93G diet, and fed to 2-month-old mice for 30 days. Fatty acid composition is analyzed by gas chromatography/mass spectroscopy. Brain derived neurotrophic factor (BDNF) is measured by ELISA. RESULTS: Lipase-treated (LT) KO increases brain DHA and EPA, respectively, 5-and 70-fold better than untreated (UT) KO. FO, whether lipase-treated or not, has no effect on brain DHA/EPA. LTKO is also more efficient in enriching liver DHA/EPA, but less efficient than UTKO and FO in enriching adipose tissue and heart. Brain BDNF is significantly increased by LTKO, but only marginally by other preparations. CONCLUSIONS: Pretreatment of dietary KO with lipase enables it to efficiently increase brain DHA/EPA because of the generation of LPC-DHA/EPA.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos/farmacocinética , Ácido Eicosapentaenoico/farmacocinética , Euphausiacea/química , Aceites/farmacocinética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/química , Aceites de Pescado/farmacocinética , Corazón/efectos de los fármacos , Lipasa/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Aceites/química , Distribución Tisular
19.
Front Immunol ; 11: 200, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117315

RESUMEN

Background: Since APOE alleles represent the most impactful genetic risk factors for Alzheimer's disease (AD), their differential mechanism(s) of action are under intense scrutiny. APOE4 is robustly associated with increased AD risk compared to the neutral APOE3 and protective APOE2. APOE alleles have also been associated with differential inflammation and gastrointestinal recovery after insult in human and murine studies, leading us to hypothesize that APOE alleles impact the gut microbiome. Methods: To assess this hypothesis, we compared 16S ribosomal RNA gene amplicon-based microbiome profiles in a cohort of mice that were homozygous for APOE2, APOE3, or APOE4, and included both males and females as well as carriers and non-carriers of five familial AD (5xFAD) mutations. Fecal samples were analyzed from mice at 4 and 6 months of age. APOE genotype, as well as sex and 5xFAD status, was then tested for influence on alpha diversity (Shannon H index) and beta diversity (principal coordinate analyses and PERMANOVA). A Random Forest analysis was used to identify features that predicted APOE, sex and 5xFAD status. Results: The richness and evenness (alpha diversity) of the fecal microbiome was not robustly associated with APOE genotype, 5xFAD status or sex. In contrast, microbial community composition (beta-diversity) was consistently and strongly associated with APOE genotype. The association between beta-diversity and sex or 5xFAD status was less consistent and more modest. Comparison of the differences underlying APOE effects showed that the relative abundance of multiple bacterial taxa was significantly different as a function of APOE genotype. Conclusions: The structure of the gut microbiome was strongly and significantly associated with APOE alleles in this murine model. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on AD-relevant phenotypes in murine models, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE genotype impacts AD.


Asunto(s)
Alelos , Apolipoproteínas E/genética , Microbioma Gastrointestinal/fisiología , Animales , Apolipoproteína E2/genética , Ratones
20.
Brain Sci ; 10(2)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046299

RESUMEN

Three months of exercise training (ET) decreases soluble Aß40 and Aß42 levels in an intensity dependent manner early in life in Tg2576 mice (Moore et al., 2016). Here, we examined the effects of 12 months of low- and high- intensity exercise training on cognitive function and amyloid plaque load in the cortex and hippocampus of 15-month-old Tg2576 mice. Low- (LOW) and high- (HI) intensity ET animals ran at speeds of 15 m/min on a level treadmill and 32 m/min at a 10% grade, respectively, for 60 min/day, five days/week, from 3 to 15 months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. ET mice demonstrated a significantly lower amyloid plaque load in the cortex and hippocampus that was intensity dependent. Improvement in cognitive function, assessed by Morris Water Maze and Novel Object Recognition tests, was greater in the HI group compared to the LOW and SED groups. LOW mice performed better in the initial latency to the platform location during the probe trial of the Morris Water Maze (MWM) test than SED, but not in any other aspect of MWM or the Novel Object Recognition test. The results of this study indicate that exercise training decreases amyloid plaque load in an intensity dependent manner and that high-intensity exercise training improves cognitive function relative to SED mice, but the intensity of the LOW group was below the threshold to demonstrate robust improvement in cognitive function in Tg2576 mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA