Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683873

RESUMEN

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Asunto(s)
Antituberculosos , Modelos Animales de Enfermedad , Macrófagos , Mycobacterium tuberculosis , Oxadiazoles , Tuberculosis , Zinc , Animales , Oxadiazoles/farmacología , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Zinc/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Tuberculosis/tratamiento farmacológico , Ratones Endogámicos C57BL , Femenino , Sinergismo Farmacológico
2.
Elife ; 92020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369020

RESUMEN

Antibiotics are widely used in the treatment of bacterial infections. Although known for their microbicidal activity, antibiotics may also interfere with the host's immune system. Here, we analyzed the effects of bedaquiline (BDQ), an inhibitor of the mycobacterial ATP synthase, on human macrophages. Genome-wide gene expression analysis revealed that BDQ reprogramed cells into potent bactericidal phagocytes. We found that 579 and 1,495 genes were respectively differentially expressed in naive- and M. tuberculosis-infected macrophages incubated with the drug, with an over-representation of lysosome-associated genes. BDQ treatment triggered a variety of antimicrobial defense mechanisms, including phagosome-lysosome fusion, and autophagy. These effects were associated with activation of transcription factor EB, involved in the transcription of lysosomal genes, resulting in enhanced intracellular killing of different bacterial species that were naturally insensitive to BDQ. Thus, BDQ could be used as a host-directed therapy against a wide range of bacterial infections.


The discovery of antibiotic drugs, which treat diseases caused by bacteria, has been a hugely valuable advance in modern medicine. They work by targeting specific cellular processes in bacteria, ultimately stopping them from multiplying or killing them outright. Antibiotics sometimes also affect their human hosts and can cause side-effects, such as gut problems or skin reactions. Recent evidence suggests that antibiotics also have an impact on the human immune system. This may happen either indirectly, by affecting 'friendly' bacteria normally present in the body, or through direct effects on immune cells. In turn, this could change the effectiveness of drug treatments. For example, if an antibiotic weakens immune cells, the body could have difficulty fighting off the existing infection ­ or become more vulnerable to new ones. However, even though new drugs are being introduced to combat the worldwide rise of antibiotic-resistant bacteria, their effects on immunity are still not well understood. For example, bedaquiline is an antibiotic recently developed to treat tuberculosis infections that are resistant to several drugs. Giraud-Gatineau et al. wanted to determine if bedaquiline altered the human immune response to bacterial infection independently from its direct anti-microbial effects. Macrophages engulf foreign particles like bacteria and break them down using enzymes stored within small internal compartments, or 'lysosomes'. Initial experiments using human macrophages, grown both with and without bedaquiline, showed that the drug did not harm the cells and that they grew normally. A combination of microscope imaging and genetic analysis revealed that exposure to bedaquiline not only increased the number of lysosomes within macrophage cells, but also the activity of genes and proteins that increase lysosomes' ability to break down foreign particles. These results suggested that bedaquiline treatment might make macrophages better at fighting infection, even if the drug itself had no direct effect on bacterial cells. Further studies, where macrophages were first treated with bedaquiline and then exposed to different types of bacteria known to be resistant to the drug, confirmed this hypothesis: in every case, the treated macrophages became efficient bacterial killers. In contrast, older anti-tuberculosis drugs did not have any such potentiating effect on the macrophages. This work sheds new light on our how antibiotic drugs can interact with the cells of the human immune system, and can sometimes even boost our innate defences. Such immune-boosting effects could one day be exploited to make more effective treatments against bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Diarilquinolinas/farmacología , Inmunidad Innata/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Fagocitos/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Señalización del Calcio/efectos de los fármacos , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitos/microbiología , Tuberculosis/inmunología , Tuberculosis/microbiología
3.
Proc Natl Acad Sci U S A ; 116(14): 6938-6943, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30886108

RESUMEN

DNA methylation is considered to be a relatively stable epigenetic mark. However, a growing body of evidence indicates that DNA methylation levels can change rapidly; for example, in innate immune cells facing an infectious agent. Nevertheless, the causal relationship between changes in DNA methylation and gene expression during infection remains to be elucidated. Here, we generated time-course data on DNA methylation, gene expression, and chromatin accessibility patterns during infection of human dendritic cells with Mycobacterium tuberculosis We found that the immune response to infection is accompanied by active demethylation of thousands of CpG sites overlapping distal enhancer elements. However, virtually all changes in gene expression in response to infection occur before detectable changes in DNA methylation, indicating that the observed losses in methylation are a downstream consequence of transcriptional activation. Footprinting analysis revealed that immune-related transcription factors (TFs), such as NF-κB/Rel, are recruited to enhancer elements before the observed losses in methylation, suggesting that DNA demethylation is mediated by TF binding to cis-acting elements. Collectively, our results show that DNA demethylation plays a limited role to the establishment of the core regulatory program engaged upon infection.


Asunto(s)
Islas de CpG/inmunología , Desmetilación del ADN , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Células Dendríticas/microbiología , Células Dendríticas/patología , Femenino , Humanos , Masculino , Tuberculosis/patología
4.
J Nanobiotechnology ; 17(1): 15, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683129

RESUMEN

BACKGROUND: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown. RESULTS: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism. CONCLUSIONS: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.


Asunto(s)
Infecciones Bacterianas/inmunología , Quitosano/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Manosa/química , Infecciones Bacterianas/microbiología , Células Cultivadas , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Redes y Vías Metabólicas/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Nanopartículas/química , Nanopartículas/metabolismo , Fagocitosis , Transcriptoma/efectos de los fármacos
5.
Am J Respir Crit Care Med ; 197(6): 801-813, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29161093

RESUMEN

RATIONALE: In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. OBJECTIVES: To document the role of B cells in TB in an unbiased manner. METHODS: We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. MEASUREMENTS AND MAIN RESULTS: B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. CONCLUSIONS: Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.


Asunto(s)
Linfocitos B/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/metabolismo , Tuberculosis/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Transducción de Señal , Bazo/metabolismo , Bazo/microbiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-28824882

RESUMEN

Immune responses are essential for the protection of the host against external dangers or infections and are normally efficient in the clearance of invading microbes. However, some intracellular pathogens have developed strategies to replicate and survive within host cells resulting in latent infection associated with strong inflammation. This excessive response can cause cell and tissue damage and lead to the release of the intracellular content, in particular the nucleotide pool, into the extracellular space. Over the last decade, new studies have implicated metabolites from the purinergic pathway in shaping the host immune response against intracellular pathogens and proved their importance in the outcome of the infection. This review aims to summarize how the immune system employs the purinergic system either to fight the pathogen, or to control collateral tissue damage. This will be achieved by focusing on the macrophage response against two intracellular pathogens, the human etiologic agent of tuberculosis, Mycobacterium tuberculosis and the protozoan parasite, Toxoplasma gondii.


Asunto(s)
Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Transducción de Señal , Toxoplasma/inmunología , Adenosina Trifosfato/metabolismo , Animales , Humanos , Inmunidad Innata , Macrófagos/microbiología , Macrófagos/parasitología , Purinérgicos/metabolismo , Toxoplasmosis/inmunología , Tuberculosis/inmunología
7.
Sci Rep ; 7(1): 5702, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720766

RESUMEN

Tuberculosis (TB) is a deadly infectious disease, which kills millions of people every year. The causative pathogen, Mycobacterium tuberculosis (MTB), is estimated to have infected up to a third of the world's population; however, only approximately 10% of infected healthy individuals progress to active TB. Despite evidence for heritability, it is not currently possible to predict who may develop TB. To explore approaches to classify susceptibility to TB, we infected with MTB dendritic cells (DCs) from putatively resistant individuals diagnosed with latent TB, and from susceptible individuals that had recovered from active TB. We measured gene expression levels in infected and non-infected cells and found hundreds of differentially expressed genes between susceptible and resistant individuals in the non-infected cells. We further found that genetic polymorphisms nearby the differentially expressed genes between susceptible and resistant individuals are more likely to be associated with TB susceptibility in published GWAS data. Lastly, we trained a classifier based on the gene expression levels in the non-infected cells, and demonstrated reasonable performance on our data and an independent data set. Overall, our promising results from this small study suggest that training a classifier on a larger cohort may enable us to accurately predict TB susceptibility.


Asunto(s)
Células Dendríticas/microbiología , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Tuberculosis Latente/genética , Tuberculosis/genética , Francia , Humanos , Tuberculosis Latente/sangre , Tuberculosis Latente/microbiología , Masculino , Mycobacterium tuberculosis/fisiología , Tuberculosis/sangre , Tuberculosis/microbiología
8.
Sci Rep ; 6: 33162, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27616470

RESUMEN

The mechanisms by which the airborne pathogen Mycobacterium tuberculosis spreads within the lung and leaves its primary niche to colonize other organs, thus inducing extrapulmonary forms of tuberculosis (TB) in humans, remains poorly understood. Herein, we used a transcriptomic approach to investigate the host cell gene expression profile in M. tuberculosis-infected human macrophages (ΜΦ). We identified 33 genes, encoding proteins involved in angiogenesis, for which the expression was significantly modified during infection, and we show that the potent angiogenic factor VEGF is secreted by M. tuberculosis-infected ΜΦ, in an RD1-dependent manner. In vivo these factors promote the formation of blood vessels in murine models of the disease. Inhibiting angiogenesis, via VEGF inactivation, abolished mycobacterial spread from the infection site. In accordance with our in vitro and in vivo results, we show that the level of VEGF in TB patients is elevated and that endothelial progenitor cells are mobilized from the bone marrow. These results strongly strengthen the most recent data suggesting that mycobacteria take advantage of the formation of new blood vessels to disseminate.


Asunto(s)
Pulmón/irrigación sanguínea , Mycobacterium tuberculosis/fisiología , Neovascularización Patológica/microbiología , Tuberculosis Pulmonar/fisiopatología , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Células Cultivadas , Femenino , Interacciones Huésped-Patógeno , Humanos , Pulmón/microbiología , Pulmón/patología , Ratones SCID , Neovascularización Patológica/metabolismo , Transcriptoma , Tuberculosis Pulmonar/microbiología , Regulación hacia Arriba
9.
Sci Rep ; 5: 16882, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26586179

RESUMEN

The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5-10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility.


Asunto(s)
Expresión Génica/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Teorema de Bayes , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Predisposición Genética a la Enfermedad/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium bovis/inmunología , Mycobacterium bovis/fisiología , Mycobacterium smegmatis/inmunología , Mycobacterium smegmatis/fisiología , Mycobacterium tuberculosis/fisiología , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética , Sitios de Carácter Cuantitativo/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/fisiología , Especificidad de la Especie , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/fisiología , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/fisiología
10.
Genome Res ; 25(12): 1801-11, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26392366

RESUMEN

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.


Asunto(s)
Infecciones Bacterianas/genética , Metilación de ADN , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Interacciones Huésped-Patógeno/genética , 5-Metilcitosina/análogos & derivados , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Células Dendríticas/inmunología , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Mycobacterium tuberculosis/inmunología , Factores de Transcripción/metabolismo , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
11.
Infect Immun ; 83(9): 3666-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150535

RESUMEN

The immune system needs safeguards that prevent collateral tissue damage mediated by the immune system while enabling an effective response against a pathogen. The purinergic pathway is one such mechanism and finely modulates inflammation by sensing nucleotides in the environment. Extracellular ATP is considered to be a danger signal leading to a proinflammatory response, whereas adenosine is immunosuppressive. CD73, also called ecto-5'-nucleotidase, occupies a strategic position in this pathway, as it is the main enzyme responsible for the generation of adenosine from ATP. Here, we explore the role of CD73 during tuberculosis, a disease characterized by an immune response that is harmful to the host and unable to eradicate Mycobacterium tuberculosis. Using CD73 knockout (KO) mice, we found that CD73 regulates the response to M. tuberculosis infection in vitro and in vivo. Mycobacterium-infected murine macrophages derived from CD73 KO mice secrete more keratinocyte chemoattractant (KC), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and release less vascular endothelial growth factor (VEGF) upon ATP stimulation than do those derived from wild-type (WT) mice. In vivo, CD73 limits the early influx of neutrophils to the lungs without affecting bacterial growth and dissemination. Collectively, our results support the view that CD73 fine-tunes antimycobacterial immune responses.


Asunto(s)
5'-Nucleotidasa/inmunología , Infiltración Neutrófila/inmunología , Tuberculosis Pulmonar/inmunología , 5'-Nucleotidasa/deficiencia , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología
12.
PLoS Genet ; 11(3): e1005064, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25793259

RESUMEN

The optimal coordination of the transcriptional response of host cells to infection is essential for establishing appropriate immunological outcomes. In this context, the role of microRNAs (miRNAs)--important epigenetic regulators of gene expression--in regulating mammalian immune systems is increasingly well recognised. However, the expression dynamics of miRNAs, and that of their isoforms, in response to infection remains largely unexplored. Here, we characterized the genome-wide miRNA transcriptional responses of human dendritic cells, over time, to various mycobacteria differing in their virulence as well as to other bacteria outside the genus Mycobacterium, using small RNA-sequencing. We detected the presence of a core temporal response to infection, shared across bacteria, comprising 49 miRNAs, highlighting a set of miRNAs that may play an essential role in the regulation of basic cellular responses to stress. Despite such broadly shared expression dynamics, we identified specific elements of variation in the miRNA response to infection across bacteria, including a virulence-dependent induction of the miR-132/212 family in response to mycobacterial infections. We also found that infection has a strong impact on both the relative abundance of the miRNA hairpin arms and the expression dynamics of miRNA isoforms. That we observed broadly consistent changes in relative arm expression and isomiR distribution across bacteria suggests that this additional, internal layer of variability in miRNA responses represents an additional source of subtle miRNA-mediated regulation upon infection. Collectively, this study increases our understanding of the dynamism and role of miRNAs in response to bacterial infection, revealing novel features of their internal variability and identifying candidate miRNAs that may contribute to differences in the pathogenicity of mycobacterial infections.


Asunto(s)
Infecciones Bacterianas/genética , Células Dendríticas/metabolismo , MicroARNs/biosíntesis , Infecciones Bacterianas/patología , Células Cultivadas , Células Dendríticas/microbiología , Células Dendríticas/patología , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Alineación de Secuencia
13.
J Infect Dis ; 210(5): 824-33, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24604822

RESUMEN

Granulomas are the hallmark of Mycobacterium tuberculosis infection. As the host fails to control the bacteria, the center of the granuloma exhibits necrosis resulting from the dying of infected macrophages. The release of the intracellular pool of nucleotides into the surrounding medium may modulate the response of newly infected macrophages, although this has never been investigated. Here, we show that extracellular adenosine triphosphate (ATP) indirectly modulates the expression of 272 genes in human macrophages infected with M. tuberculosis and that it induces their alternative activation. ATP is rapidly hydrolyzed by the ecto-ATPase CD39 into adenosine monophosphate (AMP), and it is AMP that regulates the macrophage response through the adenosine A2A receptor. Our findings reveal a previously unrecognized role for the purinergic pathway in the host response to M. tuberculosis. Dampening inflammation through signaling via the adenosine A2A receptor may limit tissue damage but may also favor bacterial immune escape.


Asunto(s)
Adenosina Trifosfato/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Adenosina Monofosfato/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal
14.
Genome Res ; 24(5): 850-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24482540

RESUMEN

MicroRNAs (miRNAs) are critical regulators of gene expression, and their role in a wide variety of biological processes, including host antimicrobial defense, is increasingly well described. Consistent with their diverse functional effects, miRNA expression is highly context dependent and shows marked changes upon cellular activation. However, the genetic control of miRNA expression in response to external stimuli and the impact of such perturbations on miRNA-mediated regulatory networks at the population level remain to be determined. Here we assessed changes in miRNA expression upon Mycobacterium tuberculosis infection and mapped expression quantitative trait loci (eQTL) in dendritic cells from a panel of healthy individuals. Genome-wide expression profiling revealed that ∼40% of miRNAs are differentially expressed upon infection. We find that the expression of 3% of miRNAs is controlled by proximate genetic factors, which are enriched in a promoter-specific histone modification associated with active transcription. Notably, we identify two infection-specific response eQTLs, for miR-326 and miR-1260, providing an initial assessment of the impact of genotype-environment interactions on miRNA molecular phenotypes. Furthermore, we show that infection coincides with a marked remodeling of the genome-wide relationships between miRNA and mRNA expression levels. This observation, supplemented by experimental data using the model of miR-29a, sheds light on the role of a set of miRNAs in cellular responses to infection. Collectively, this study increases our understanding of the genetic architecture of miRNA expression in response to infection, and highlights the wide-reaching impact of altering miRNA expression on the transcriptional landscape of a cell.


Asunto(s)
Genoma Humano , MicroARNs/metabolismo , Transcripción Genética , Tuberculosis/genética , Estudios de Casos y Controles , Interacción Gen-Ambiente , Humanos , MicroARNs/genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tuberculosis/metabolismo
15.
Res Microbiol ; 164(3): 270-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23266372

RESUMEN

Tuberculosis (TB) remains one of the world's most deadly infectious diseases, with approximately 1.5 million deaths and 9 million new cases of TB in 2010. There is an urgent global need to develop new control tools, with advances necessary in our basic understanding of the pathogen, Mycobacterium tuberculosis, and translation of these findings to public health. It was in this context that the "Tuberculosis 2012: Biology, Pathogenesis, Intervention Strategies" meeting was held in the Institut Pasteur, Paris, France from 11 to 15th Sept 2012. The meeting brought together over 600 delegates from across the globe to hear updates on the latest research findings and how they are underpinning the development of novel vaccines, diagnostics, and drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Farmacorresistencia Bacteriana , Variación Genética , Interacciones Huésped-Patógeno , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/fisiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología , Vacunas contra la Tuberculosis/inmunología
16.
PLoS One ; 7(6): e39080, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22720036

RESUMEN

Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.


Asunto(s)
Bacterias/patogenicidad , Células Epiteliales/microbiología , Interferones/genética , Placenta/microbiología , Animales , Femenino , Ratones , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Proc Natl Acad Sci U S A ; 109(4): 1204-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22233810

RESUMEN

Tuberculosis (TB) is a major public health problem. One-third of the world's population is estimated to be infected with Mycobacterium tuberculosis (MTB), the etiological agent causing TB, and active disease kills nearly 2 million individuals worldwide every year. Several lines of evidence indicate that interindividual variation in susceptibility to TB has a heritable component, yet we still know little about the underlying genetic architecture. To address this, we performed a genome-wide mapping study of loci that are associated with functional variation in immune response to MTB. Specifically, we characterized transcript and protein expression levels and mapped expression quantitative trait loci (eQTL) in primary dendritic cells (DCs) from 65 individuals, before and after infection with MTB. We found 198 response eQTL, namely loci that were associated with variation in gene expression levels in either untreated or MTB-infected DCs, but not both. These response eQTL are associated with natural regulatory variation that likely affects (directly or indirectly) host interaction with MTB. Indeed, when we integrated our data with results from a genome-wide association study (GWAS) for pulmonary TB, we found that the response eQTL were more likely to be genetically associated with the disease. We thus identified a number of candidate loci, including the MAPK phosphatase DUSP14 in particular, that are promising susceptibility genes to pulmonary TB.


Asunto(s)
Células Dendríticas/metabolismo , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/inmunología , Adulto , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo/genética , Población Blanca/genética
18.
Hum Immunol ; 73(2): 196-200, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22067212

RESUMEN

The NAIP gene encodes an intracellular innate immunity receptor that senses flagellin. The genomic region containing NAIP presents a complex genomic organization and includes various NAIP paralogs. Here, we assessed the degree of copy number variation of the complete NAIP gene (NAIPFull) in various human populations and studied the functional impact of such variation on host cell fate using Legionella pneumophila as an infection model. We determined that African populations have a NAIPFull duplication at a higher frequency than Europeans and Asians, with an increased transcription of the gene. In addition, we demonstrated that a higher amount of the NAIPFull protein dramatically increases cell death upon infection by L. pneumophila, a mechanism that may account for increased host resistance to infection. We postulate that the NAIPFull gene duplication might have been evolutionary maintained, or even selected for, because it may confer an advantage to the host against flagellated bacteria.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedad de los Legionarios/genética , Proteína Inhibidora de la Apoptosis Neuronal/genética , Asia/epidemiología , Población Negra/genética , Muerte Celular/genética , Europa (Continente)/epidemiología , Duplicación de Gen , Humanos , Enfermedad de los Legionarios/epidemiología , Isoformas de Proteínas , Regulación hacia Arriba
19.
Cell Host Microbe ; 10(3): 248-59, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21925112

RESUMEN

Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P(1)-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimología , Tuberculosis/metabolismo , Zinc/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/genética , Células Cultivadas , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Zinc/toxicidad
20.
J Exp Med ; 206(10): 2205-20, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19770268

RESUMEN

The C-type lectin dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) mediates the innate immune recognition of microbial carbohydrates. We investigated the function of this molecule in the host response to pathogens in vivo, by generating mouse lines lacking the DC-SIGN homologues SIGNR1, SIGNR3, and SIGNR5. Resistance to Mycobacterium tuberculosis was impaired only in SIGNR3-deficient animals. SIGNR3 was expressed in lung phagocytes during infection, and interacted with M. tuberculosis bacilli and mycobacterial surface glycoconjugates to induce secretion of critical host defense inflammatory cytokines, including tumor necrosis factor (TNF). SIGNR3 signaling was dependent on an intracellular tyrosine-based motif and the tyrosine kinase Syk. Thus, the mouse DC-SIGN homologue SIGNR3 makes a unique contribution to protection of the host against a pulmonary bacterial pathogen.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Lectinas Tipo C/fisiología , Receptores de Superficie Celular/fisiología , Tuberculosis/inmunología , Animales , Antígenos CD/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Femenino , Glicoconjugados/metabolismo , Interleucina-6/biosíntesis , Lipopolisacáridos/metabolismo , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Transducción de Señal , Receptor Toll-Like 2/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...