Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1433061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39385850

RESUMEN

Serotonin is an essential neuromodulator that affects behavioral and cognitive functions. Previous studies have shown that activation of serotonergic neurons in the dorsal raphe nucleus (DRN) promotes patience to wait for future rewards. However, it is still unclear whether serotonergic neurons also regulate persistence to act for future rewards. Here we used optogenetic activation and inhibition of DRN serotonergic neurons to examine their effects on sustained motor actions for future rewards. We trained mice to perform waiting and repeated lever-pressing tasks with variable reward delays and tested effects of optogenetic activation and inhibition of DRN serotonergic neurons on task performance. Interestingly, in the lever-pressing task, mice tolerated longer delays as they repeatedly pressed a lever than in the waiting task, suggesting that lever-pressing actions may not simply be costly, but may also be subjectively rewarding. Optogenetic activation of DRN serotonergic neurons prolonged waiting duration in the waiting task, consistent with previous studies. However, its effect on lever presses was nuanced, and was detected only by focusing on the period before premature reward check and by subtracting the trends within and across sessions using generalized linear model. While optogenetic inhibition decreased waiting, it did not affect lever pressing time or numbers. These results revealed that the necessity of motor actions may increase motivation for delayed rewards and that DRN serotonergic neurons more significantly promote waiting rather than persistent motor actions for future rewards.

2.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38969504

RESUMEN

Dopamine release in the nucleus accumbens core (NAcC) is generally considered to be a proxy for phasic firing of the ventral tegmental area dopamine (VTADA) neurons. Thus, dopamine release in NAcC is hypothesized to reflect a unitary role in reward prediction error signaling. However, recent studies reveal more diverse roles of dopamine neurons, which support an emerging idea that dopamine regulates learning differently in distinct circuits. To understand whether the NAcC might regulate a unique component of learning, we recorded dopamine release in NAcC while male rats performed a backward conditioning task where a reward is followed by a neutral cue. We used this task because we can delineate different components of learning, which include sensory-specific inhibitory and general excitatory components. Furthermore, we have shown that VTADA neurons are necessary for both the specific and general components of backward associations. Here, we found that dopamine release in NAcC increased to the reward across learning while reducing to the cue that followed as it became more expected. This mirrors the dopamine prediction error signal seen during forward conditioning and cannot be accounted for temporal-difference reinforcement learning. Subsequent tests allowed us to dissociate these learning components and revealed that dopamine release in NAcC reflects the general excitatory component of backward associations, but not their sensory-specific component. These results emphasize the importance of examining distinct functions of different dopamine projections in reinforcement learning.


Asunto(s)
Dopamina , Aprendizaje , Núcleo Accumbens , Recompensa , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Dopamina/metabolismo , Masculino , Ratas , Aprendizaje/fisiología , Ratas Sprague-Dawley , Señales (Psicología) , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/metabolismo
3.
Nat Neurosci ; 27(7): 1253-1259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38741021

RESUMEN

Dopamine neurons in the ventral tegmental area support intracranial self-stimulation (ICSS), yet the cognitive representations underlying this phenomenon remain unclear. Here, 20-Hz stimulation of dopamine neurons, which approximates a physiologically relevant prediction error, was not sufficient to support ICSS beyond a continuously reinforced schedule and did not endow cues with a general or specific value. However, 50-Hz stimulation of dopamine neurons was sufficient to drive robust ICSS and was represented as a specific reward to motivate behavior. The frequency dependence of this effect is due to the rate (not the number) of action potentials produced by dopamine neurons, which differently modulates dopamine release downstream.


Asunto(s)
Neuronas Dopaminérgicas , Recompensa , Autoestimulación , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas/fisiología , Autoestimulación/fisiología , Masculino , Área Tegmental Ventral/fisiología , Mesencéfalo/fisiología , Potenciales de Acción/fisiología , Cognición/fisiología , Estimulación Eléctrica/métodos , Macaca mulatta , Dopamina/metabolismo
4.
Nat Commun ; 15(1): 4152, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755120

RESUMEN

Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.


Asunto(s)
Núcleo Dorsal del Rafe , Optogenética , Neuronas Serotoninérgicas , Serotonina , Animales , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/fisiología , Masculino , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Ratones , Serotonina/metabolismo , Imagen por Resonancia Magnética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/fisiología , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
5.
Curr Biol ; 34(1): R16-R18, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194920

RESUMEN

A new study reveals that ventral hippocampus integrates information about where we can get rewards into a decision to seek out those rewards. This helps maximise the number of rewards received, while reducing the effort we expend to procure them.


Asunto(s)
Hipocampo , Aprendizaje , Recompensa
7.
Plant Cell ; 16(8): 2048-58, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273293

RESUMEN

In higher plants, photorespiratory Gly oxidation in leaf mitochondria yields ammonium in large amounts. Mitochondrial ammonium must somehow be recovered as glutamate in chloroplasts. As the first step in that recovery, we report glutamine synthetase (GS) activity in highly purified Arabidopsis thaliana mitochondria isolated from light-adapted leaf tissue. Leaf mitochondrial GS activity is further induced in response to either physiological CO(2) limitation or transient darkness. Historically, whether mitochondria are fully competent for oxidative phosphorylation in actively photorespiring leaves has remained uncertain. Here, we report that light-adapted, intact, leaf mitochondria supplied with Gly as sole energy source are fully competent for oxidative phosphorylation. Purified intact mitochondria efficiently use Gly oxidation (as sole energy, NH(3), and CO(2) source) to drive conversion of l-Orn to l-citrulline, an ATP-dependent process. An A. thaliana genome-wide search for nuclear gene(s) encoding mitochondrial GS activity yielded a single candidate, GLN2. Stably transgenic A. thaliana ecotype Columbia plants expressing a p35S::GLN2::green fluorescent protein (GFP) chimeric reporter were constructed. When observed by laser scanning confocal microscopy, leaf mesophyll and epidermal tissue of transgenic plants showed punctate GFP fluorescence that colocalized with mitochondria. In immunoblot experiments, a 41-kD chimeric GLN2::GFP protein was present in both leaf mitochondria and chloroplasts of these stably transgenic plants. Therefore, the GLN2 gene product, heretofore labeled plastidic GS-2, functions in both leaf mitochondria and chloroplasts to faciliate ammonium recovery during photorespiration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Mitocondrias/enzimología , Hojas de la Planta/metabolismo , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Citrulina/metabolismo , Glutamato-Amoníaco Ligasa/genética , Ácido Glutámico/metabolismo , Mitocondrias/genética , Datos de Secuencia Molecular , Ornitina/metabolismo , Oxidación-Reducción , Hojas de la Planta/citología , Plantas Modificadas Genéticamente , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...