Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Int J Surg ; 79: 52-53, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32371151
2.
Food Chem ; 301: 125292, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394334

RESUMEN

It is estimated that over 30% of the global population is anaemic, half of which is due to iron deficiency. The bioavailability of iron from vegetables is low and variable, and influenced by food composition and matrix. We have therefore determined the relative bioavailability of iron in five types of green vegetable, spinach, broccoli, savoy cabbage, curly kale and green pepper, by measuring the ferritin response in a simulated digestion/Caco-2 cell model. Savoy cabbage gave the highest ferritin response and analysis of the digest showed that the iron was present in low molecular weight fractions which contained glucose, fructose, organic acids and amino acids. The addition of fructose 1,6-biphosphate to the Caco-2 cells increased iron uptake 2-fold. These results demonstrate that cabbage was the best source of bioavailable iron out of the vegetables studied and suggest that the formation of complexes with fructose derivatives contribute to increase the iron bioavailability.


Asunto(s)
Hierro/farmacocinética , Verduras/química , Disponibilidad Biológica , Células CACO-2 , Digestión , Ferritinas/metabolismo , Humanos , Hierro/análisis , Peso Molecular , Verduras/metabolismo
3.
Water Res ; 155: 12-25, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826592

RESUMEN

Stringent phosphorus discharge standards (i.e. 0.15-0.3 g P.m-3) in the Baltic area will compel wastewater treatment practice to augment enhanced biological phosphorus removal (EBPR) with chemical precipitation using metal salts. This study examines control of iron chemical dosing for phosphorus removal under dynamic loading conditions to optimize operational aspects of a membrane biological reactor (MBR) pilot plant. An upgraded version of the Benchmark Simulation Model No. 2 (BSM2) with an improved physico-chemical framework (PCF) is used to develop a plant-wide model for the pilot plant. The PCF consists of an equilibrium approach describing ion speciation and pairing, kinetic minerals precipitation (such as hydrous ferric oxides (HFO) and FePO4) as well as adsorption and co-precipitation. Model performance is assessed against data sets from the pilot plant, evaluating the capability to describe water and sludge lines across the treatment process under steady-state operation. Simulated phosphorus differed as little as 5-10% (relative) from measured phosphorus, indicating that the model was representative of reality. The study also shows that environmental factors such as pH, as well operating conditions such as Fe/P molar ratios (1, 1.5 and 2), influence the concentration of dissolved phosphate in the effluent. The time constant of simultaneous precipitation in the calibrated model, due to a step change decrease/increase in FeSO4 dosage, was found to be roughly 5 days, indicating a slow dynamic response due to a multi-step process involving dissolution, oxidation, precipitation, aging, adsorption and co-precipitation. The persistence effect of accumulated iron-precipitates (HFO particulates) in the activated sludge seemed important for phosphorus removal, and therefore solids retention time plays a crucial role according to the model. The aerobic tank was deemed to be the most suitable dosing location for FeSO4 addition, due to high dissolved oxygen levels and good mixing conditions. Finally, dynamic model-based analyses show the benefits of using automatic control when dosing chemicals.


Asunto(s)
Fósforo , Aguas Residuales , Hierro , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
4.
Phys Rev Lett ; 121(19): 191101, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30468587

RESUMEN

Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.

5.
Waste Manag ; 80: 130-136, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30454992

RESUMEN

There is increasing evidence that humic acid (HA) is hampering the performance of anaerobic digesters treating animal manures and thermally-hydrolysed waste activated sludge. In the present study, HA inhibition and inhibition resilience was examined for hydrolysis (carbohydrate and protein) and acetotrophic methanogenesis with four distinct full-scale anaerobic inocula. The aim was to further understand HA inhibition and to explore potential relationships between microbial factors and inhibition resilience. For two of the four tested inocula, cellulose degradation showed a start-up delay that lengthened as HA concentration increased from 0 to 2 g L-1. This inhibition was reversible because, after the initial delay, subsequent hydrolysis rates and methane yields were not significantly influenced by HA concentration. Cellulose hydrolysis results at HA concentrations below 2 g L-1 support a threshold inhibition mechanism, i.e. HA complexes with hydrolytic enzymes preventing them from binding with cellulose, but once all the HA had been complexed, enzymes subsequently released are free to bind with cellulose. Inocula with higher cellulose hydrolytic activity were less affected by HA inhibition, suggesting a potential link between HA inhibition resilience and microbial activity. However, above 5 gHA L-1, cellulose hydrolysis rates decreased with increasing HA concentration; indicating that the mechanisms of inhibition may change depending on some threshold HA concentration. Protein hydrolysis and acetotrophic methanogenesis were less susceptible to HA inhibition than cellulose hydrolysis, since signs of inhibition were only observed above 5 gHA L-1. Acetotrophic methanogenesis was partially inhibited at 10 gHA L-1 and completely inhibited at 20 gHA L-1. These results further support that HA inhibition is selective towards particular enzymes.


Asunto(s)
Sustancias Húmicas , Aguas del Alcantarillado , Anaerobiosis , Hidrólisis , Metano
6.
Water Res ; 143: 127-135, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29940358

RESUMEN

Inhibition by ammoniacal nitrogen, consisting of free ammonia (NH3) and ammonium ion (NH4+), has been widely investigated for anaerobic digestion. However, despite the large amount of research on the subject, ammoniacal nitrogen inhibition still threatens many anaerobic digesters. This paper presents (i) a method to reliably characterise ammoniacal nitrogen inhibition and (ii) a robust inhibition modelling approach. Results showed that NH3 and NH4+ inhibition need to be jointly determined, which can only be done by performing inhibition tests at various total ammoniacal nitrogen (TAN) concentrations and pH values. These test conditions were reliably achieved using the salts NH4HCO3 and NH4Cl without pH adjustment, rather than by using NH4Cl with pH adjustment. The use of only salts showed a lower pH change during the inhibition test (∼1.5 days), thereby decreasing the uncertainty in TAN speciation and strengthening the test and model outputs. A threshold inhibition function satisfactorily described (R2 > 0.99) the joint inhibition of NH3 and NH4+ on three distinct inocula, and provided a better description of the inhibition testing results than a non-competitive inhibition function (R2 ∼0.70). The key advantage of the proposed threshold inhibition function is its capacity to identify the inhibition lower limit (concentration where inhibition starts; KImin) and upper limit (concentration where inhibition is complete; KImax). The threshold inhibition function also identifies the 50% inhibition concentration (KI50) at the midpoint of KImin and KImax. Finally, experimental and model results show that at pH 7.3-7.7 and TAN concentrations above 2000 mgN·L-1, both NH3 and NH4+ contribute significantly to overall inhibition.


Asunto(s)
Amoníaco/metabolismo , Compuestos de Amonio/metabolismo , Modelos Teóricos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo
7.
N Biotechnol ; 44: 23-30, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-29510237

RESUMEN

The relationship between anaerobic digestion operational conditions and (i) microbial community, (ii) acetoclastic methanogenic activity and (iii) free ammonia (NH3) inhibition resilience was investigated. Thirteen inocula were obtained from full and pilot scale digesters fed with different substrates, digester configurations, operating temperatures and NH3 concentrations (0.1-241 mgN·L-1). Substrate type and temperature were the primary factors influencing microbial community composition. Methanogenic activity ranged from 0.04 to 0.14 gCOD-CH4·g-1VS·day-1, and was significantly correlated with archaeal relative abundance and archaeal community PC2. The variability of NH3 resilience among inocula was moderate, with inhibition threshold values (KI50) ranging between 32 and 175 mgNH3-N·L-1. No microbial or operational factors correlated with NH3 resilience. However, the slopes of inhibition threshold curves were influenced by some environmental factors, namely substrate type, digester temperature and NH3 concentration. Overall, these results indicate that low and moderate background NH3 concentrations is not a key determinant of microbial community nor NH3 resilience.


Asunto(s)
Amoníaco/metabolismo , Archaea/crecimiento & desarrollo , Metano/metabolismo , Consorcios Microbianos/fisiología , Amoníaco/farmacología , Anaerobiosis/efectos de los fármacos , Anaerobiosis/fisiología
8.
Food Chem ; 228: 91-98, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28317782

RESUMEN

Myo-inositol hexakisphosphate (IP6), is the main iron chelator in cereals and bread. The aim of this study was to investigate the effect of three commercial baking processes (sourdough, conventional yeast and Chorleywood Bread Making Process (CBP)) on the IP6 content of wholemeal bread, its impact on iron uptake in Caco-2 cells and the predicted bioavailability of iron from these breads with added iron, simulating a mixed-meal. The sourdough process fully degraded IP6 whilst the CBP and conventional processes reduced it by 75% compared with wholemeal flour. The iron released in solution after a simulated digestion was 8-fold higher in sourdough bread than with others but no difference in cellular iron uptake was observed. Additionally, when iron was added to the different breads digestions only sourdough bread elicited a significant ferritin response in Caco-2 cells (4.8-fold compared to the other breads) suggesting that sourdough bread could contribute towards improved iron nutrition.


Asunto(s)
Pan/análisis , Células CACO-2/metabolismo , Hierro/metabolismo , Disponibilidad Biológica , Digestión , Humanos , Técnicas In Vitro , Intestinos
9.
Waste Manag ; 64: 79-87, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28302526

RESUMEN

Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed-1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community.


Asunto(s)
Reactores Biológicos , Estiércol , Metano , Anaerobiosis , Digestión
10.
Methods Enzymol ; 575: 247-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27417932

RESUMEN

The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation.


Asunto(s)
Vías Biosintéticas , Escherichia coli/genética , Mentha/genética , Ingeniería Metabólica/métodos , Monoterpenos/metabolismo , Escherichia coli/metabolismo , Genes de Plantas , Microbiología Industrial/métodos , Mentha/enzimología , Mentha/metabolismo , Familia de Multigenes , Operón , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biología Sintética/métodos
11.
Waste Manag ; 50: 300-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26948667

RESUMEN

A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation.


Asunto(s)
Estiércol/análisis , Eliminación de Residuos/métodos , Aguas del Alcantarillado/química , Anaerobiosis , Animales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Metano/análisis , Proyectos Piloto , Sus scrofa , Administración de Residuos/métodos
12.
Water Res ; 84: 286-94, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26255126

RESUMEN

Controlled struvite formation has been attracting increasing attention as a near mature technology to recover nutrients from wastewater. However, struvite feasibility is generally limited by the high cost of chemical reagents. With the aim to understand and control reagent use efficiency, experiments and equilibrium model simulations examined inorganic nitrogen (TAN) removal from pig manure via struvite with added magnesium and phosphate reagents. Four industrial magnesium oxide (MgO), a commercial product and three by-products from magnesite calcination, were tested with phosphate added as a highly soluble potassium salt. TAN removal extents with the MgOs ranged from 47 to 72%, with the highest grade MgO providing the greatest extent of TAN removal. However, model analysis showed that all the MgO reagents were poorly soluble (only about 40% of added magnesium actually dissolved). The model results suggested that this poor dissolution was due to kinetic limitations, not solubility constraints. A further set of additional reagents (termed stabilization agents) were prepared by pre-treating the MgO reagents with phosphoric acid, and were tested separately as a source of both magnesium and phosphate. Results showed that acid pre-treatment of moderate to highly reactive MgOs (soft to medium-burnt) primarily formed bobierrite as the stabilizing agent, whereas the pre-treatment of very low reactivity MgOs (dead-burnt) mostly formed newberyite. The newberyite stabilizing agents achieved very high TAN removal extents of about 80%, which is significant, considering that these were formed from dead-burnt/low-grade MgOs. However, the bobierrite stabilizing agents achieved a substantially lower TAN removal extent than their medium-to-high reactivity precursor MgOs. Again, model analysis showed that the bobierrite stabilizing agents were poorly soluble, due to kinetic limitations, not solubility constraints. In contrast, the model suggested that the newberyite stabilizing agents almost completely dissolved to very effectively form struvite. A mechanism was proposed by which conditions near a dissolving reagent particle surface causes unwanted struvite nucleation onto and overgrowth of the reagent particle, inhibiting further dissolution and markedly reducing reagent efficiency. The findings of the study could have implications for reagent efficiency with struvite in general, even when using other solid reagents such as magnesium hydroxide or other MgOs.


Asunto(s)
Compuestos de Magnesio/química , Nitrógeno/química , Fosfatos/química , Animales , Óxido de Magnesio/química , Estruvita , Porcinos
13.
Water Res ; 81: 208-15, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26065392

RESUMEN

Despite the importance of quantifying inhibitory capacity of compounds in anaerobic digestion, there is currently no well-defined method to assess it. Experimental methods in literature are frequently time-consuming and resource intensive. As a result, detailed inhibition testing rarely forms part of anaerobic digestion studies, despite the importance and utility of this information. This study develops and validates a simple and rapid inhibition test protocol, based on relative inhibition of acetoclastic methanogens. The inhibition potential of a compound is determined from the reduction in specific methanogenic activity as inhibitor concentration is increased. The method was successfully performed on two inoculums from different source environments and with both biostatic and biocidal inhibitors. Optimisation work indicated that: (i) sodium acetate is a preferred carbon source compared to acetic acid; (ii) an inoculum to acetate ratio of 5 g VS g(-1) acetate is preferred, and (iii) that the inoculum concentration should be normalised to 10 g L(-1) VS to reduce mass transfer problems and promote consistency. A key advantage over existing methods is that the sampling strategy has been optimised to three events over 1.5 days while effectively controlling the relative analytical error.


Asunto(s)
Amoníaco/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aguas del Alcantarillado/microbiología , Acetato de Sodio/metabolismo , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos , Carbono/metabolismo , Sulfatiazol , Sulfatiazoles/metabolismo , Eliminación de Residuos Líquidos
14.
Br J Cancer ; 112(6): 957-62, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25742467

RESUMEN

Apoptotic cell death inhibits oncogenesis at multiple stages, ranging from transformation to metastasis. Consequently, in order for cancer to develop and progress, apoptosis must be inhibited. Cell death also plays major roles in cancer treatment, serving as the main effector function of many anti-cancer therapies. In this review, we discuss the role of apoptosis in the development and treatment of cancer. Specifically, we focus upon the mitochondrial pathway of apoptosis-the most commonly deregulated form of cell death in cancer. In this process, mitochondrial outer membrane permeabilisation or MOMP represents the defining event that irrevocably commits a cell to die. We provide an overview of how this pathway is regulated by BCL-2 family proteins and describe ways in which cancer cells can block it. Finally, we discuss exciting new approaches aimed at specifically inducing mitochondrial apoptosis in cancer cells, outlining their potential pitfalls, while highlighting their considerable therapeutic promise.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/patología , Neoplasias/patología , Animales , Carcinogénesis/patología , Permeabilidad de la Membrana Celular/fisiología , Humanos , Transducción de Señal/fisiología
15.
Bioresour Technol ; 181: 97-104, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25643955

RESUMEN

This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery.


Asunto(s)
Espacio Intracelular/química , Estiércol/análisis , Eliminación de Residuos/métodos , Scenedesmus/metabolismo , Proteínas Algáceas/aislamiento & purificación , Anaerobiosis , Animales , Biomasa , Metano/biosíntesis , Modelos Teóricos , Polisacáridos/aislamiento & purificación , Sus scrofa
16.
Water Sci Technol ; 71(1): 89-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25607674

RESUMEN

A predictive modelling technique was employed to estimate wastewater temperatures in sewer pipes. The simplicity of abductive predictive models attracts large numbers of users due to their minimal computation time and limited number of measurable input parameters. Data measured from five sewer pipes over a period of 12 months provide 33,900 training entries and 39,000 evaluation entries to support the models' development. Two simple predictive models for urban upstream combined sewers and large downstream collector sewers were developed. They delivered good correlation between measured and predicted wastewater temperatures proven by their R(2) values of up to 0.98 and root mean square error (RMSE) of the temperature change along the sewer pipe ranging from 0.15 °C to 0.33 °C. Analysis of a number of potential input parameters indicated that upstream wastewater temperature and downstream in-sewer air temperature were the only input parameters that are needed in the developed models to deliver this level of accuracy.


Asunto(s)
Modelos Teóricos , Aguas del Alcantarillado/análisis , Temperatura , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Bélgica , Ciudades
17.
Rev Sci Instrum ; 85(11): 114902, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430137

RESUMEN

In this paper, the directivity of the airborne sound field scattered by a dynamically rough free flow surface in a flume is used to determine the mean roughness height for six hydraulic conditions in which the uniform depth of the turbulent flow. The nonlinear curve fitting method is used to minimize the error between the predicted directivity and directivity data. The data fitting algorithm is based on the averaged solution for the scattered sound pressure as a function of angle which is derived through the Kirchhoff integral and its approximations. This solution takes into account the directivity of the acoustic source. For the adopted source and receiver geometry and acoustic frequency it is shown that the contribution from the stationary phase point (single specular point on the rough surface) yields similar results to those which can be obtained through the full Kirchhoff's integral. The accuracy in the inverted mean roughness height is comparable to that achieved with an array of conductive wave probes. This method enables non-invasive estimation of the flow Reynolds number and uniform flow depth.

18.
Water Sci Technol ; 70(2): 297-306, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25051477

RESUMEN

Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP.


Asunto(s)
Drenaje de Agua , Calor , Aguas Residuales , Conservación de los Recursos Naturales , Modelos Teóricos , Aguas del Alcantarillado , Factores de Tiempo , Eliminación de Residuos Líquidos
19.
Cell Death Differ ; 21(10): 1511-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24902904

RESUMEN

Necroptosis is a form of programmed cell death that depends on the activation of receptor interacting protein kinase-1 (RIPK1) and RIPK3 by receptors such as tumor necrosis factor (TNF) receptor-1. Structural studies indicate that activation of RIPK3 by RIPK1 involves the formation of oligomers via interactions of the RIP homotypic interaction motif (RHIM) domains shared by both proteins; however, the molecular mechanisms by which this occurs are not fully understood. To gain insight into this process, we constructed versions of RIPK3 that could be induced to dimerize or oligomerize in response to a synthetic drug. Using this system, we find that although the formation of RIPK3 dimers is itself insufficient to trigger cell death, this dimerization seeds a RHIM-dependent complex, the propagation and stability of which is controlled by caspase-8 and RIPK1. Consistent with this idea, we find that chemically enforced oligomerization of RIPK3 is sufficient to induce necroptosis, independent of the presence of the RHIM domain, TNF stimulation or RIPK1 activity. Further, although RIPK1 contributes to TNF-mediated RIPK3 activation, we find that RIPK1 intrinsically suppresses spontaneous RIPK3 activation in the cytosol by controlling RIPK3 oligomerization. Cells lacking RIPK1 undergo increased spontaneous RIPK3-dependent death on accumulation of the RIPK3 protein, while cells containing a chemically inhibited or catalytically inactive form of RIPK1 are protected from this form of death. Together, these data indicate that RIPK1 can activate RIPK3 in response to receptor signaling, but also acts as a negative regulator of spontaneous RIPK3 activation in the cytosol.


Asunto(s)
Apoptosis/fisiología , Necrosis/fisiopatología , Multimerización de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Caspasa 8/metabolismo , Línea Celular , Supervivencia Celular , Activación Enzimática , Humanos , Imidazoles/farmacología , Indoles/farmacología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
20.
Water Sci Technol ; 69(3): 672-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552743

RESUMEN

Reliable prediction of time-varying pollutant loads in combined sewer systems during storm periods can aid better management of the release of pollution into natural environments as well as enhancing storage tank design. Better understanding of the behaviour of sewer sediments is crucial for the development of models that adequately describe the transport of in-sewer solids and accurately predict the changes in pollutant concentration within combined sewers during storm events. This paper reports on the results of a test programme to examine the erosion of highly organic sewer sediment under the application of time-varying shear stress. The tests were carried out with and without supplying oxygen, and varying simulated dry-weather periods. The aim was to investigate the behaviour of real in-sewer sediment with a high organic content (around 80%) in an attempt to improve prediction of the transport rates under the particular Mediterranean conditions of long dry-period/build-up and intense rainfall/wash-off, and understand how this environment affects the erosional resistance and subsequent sediment release. Results have been compared with previous work on lower organic content sewer sediments and artificial organic sediment.


Asunto(s)
Drenaje de Agua , Aguas del Alcantarillado/química , Contaminación del Agua , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...