Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(1): 405-421, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728561

RESUMEN

The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Paraquat/farmacología , Paraquat/metabolismo , Proteoma/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacología , Estrés Oxidativo , Fotosíntesis , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Biotechnol J ; 21(2): 250-269, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36204821

RESUMEN

In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.


Asunto(s)
Proteoma , Proteómica , Transporte de Proteínas , Proteómica/métodos , Transporte Biológico , Proteoma/análisis , Proteoma/metabolismo , Espectrometría de Masas/métodos , Endocitosis
3.
Plant Physiol ; 190(4): 2847-2867, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35993881

RESUMEN

The roles of mitogen-activated protein kinases (MAPKs) in plant-fungal pathogenic interactions are poorly understood in crops. Here, microscopic, phenotypic, proteomic, and biochemical analyses revealed that roots of independent transcription activator-like effector nuclease (TALEN)-based knockout lines of barley (Hordeum vulgare L.) MAPK 3 (HvMPK3 KO) were resistant against Fusarium graminearum infection. When co-cultured with roots of the HvMPK3 KO lines, F. graminearum hyphae were excluded to the extracellular space, the growth pattern of extracellular hyphae was considerably deregulated, mycelia development was less efficient, and number of appressoria-like structures and their penetration potential were substantially reduced. Intracellular penetration of hyphae was preceded by the massive production of reactive oxygen species (ROS) in attacked cells of the wild-type (WT), but ROS production was mitigated in the HvMPK3 KO lines. Suppression of ROS production in these lines coincided with elevated abundance of catalase (CAT) and ascorbate peroxidase (APX). Moreover, differential proteomic analysis revealed downregulation of several defense-related proteins in WT, and the upregulation of pathogenesis-related protein 1 (PR-1) and cysteine proteases in HvMPK3 KO lines. Proteins involved in suberin formation, such as peroxidases, lipid transfer proteins (LTPs), and the GDSL esterase/lipase (containing "GDSL" aminosequence motif) were differentially regulated in HvMPK3 KO lines after F. graminearum inoculation. Consistent with proteomic analysis, microscopic observations showed enhanced suberin accumulation in roots of HvMPK3 KO lines, most likely contributing to the arrested infection by F. graminearum. These results suggest that TALEN-based knockout of HvMPK3 leads to barley root resistance against Fusarium root rot.


Asunto(s)
Fusarium , Hordeum , Fusarium/fisiología , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
4.
Front Plant Sci ; 13: 823561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360337

RESUMEN

Iron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear enzyme with osmoprotective and antioxidant functions. However, the current knowledge on its role in oxidative stress tolerance is ambiguous. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. In accordance with the known regulation of FSD1 expression, abundance, and activity, the findings demonstrated that the antioxidant function of FSD1 depends on the availability of Cu2+ in growth media. Arabidopsis fsd1 mutants showed lower capacity to decompose superoxide at low Cu2+ concentrations in the medium. Prolonged exposure to MV led to reduced ascorbate levels and higher protein carbonylation in fsd1 mutants and transgenic plants lacking a plastid FSD1 pool as compared to the wild type. MV induced a rapid increase in FSD1 activity, followed by a decrease after 4 h long exposure. Genetic disruption of FSD1 negatively affected the hydrogen peroxide-decomposing ascorbate peroxidase in fsd1 mutants. Chloroplastic localization of FSD1 is crucial to maintain redox homeostasis. Proteomic analysis showed that the sensitivity of fsd1 mutants to MV coincided with decreased abundances of ferredoxin and photosystem II light-harvesting complex proteins. These mutants have higher levels of chloroplastic proteases indicating an altered protein turnover in chloroplasts. Moreover, FSD1 disruption affects the abundance of proteins involved in the defense response. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.

5.
Front Plant Sci ; 13: 1035573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589041

RESUMEN

The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.

6.
Front Plant Sci ; 12: 666229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995462

RESUMEN

Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.

8.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668638

RESUMEN

Single-point mutation in the ACTIN2 gene of the der1-3 mutant revealed that ACTIN2 is an essential actin isovariant required for root hair tip growth, and leads to shorter, thinner and more randomly oriented actin filaments in comparison to the wild-type C24 genotype. The actin cytoskeleton has been linked to plant defense against oxidative stress, but it is not clear how altered structural organization and dynamics of actin filaments may help plants to cope with oxidative stress. In this study, we characterized root growth, plant biomass, actin organization and antioxidant activity of the der1-3 mutant under oxidative stress induced by paraquat and H2O2. Under these conditions, plant growth was better in the der1-3 mutant, while the actin cytoskeleton in the der1-3 carrying pro35S::GFP:FABD2 construct showed a lower bundling rate and higher dynamicity. Biochemical analyses documented a lower degree of lipid peroxidation, and an elevated capacity to decompose superoxide and hydrogen peroxide. These results support the view that the der1-3 mutant is more resistant to oxidative stress. We propose that alterations in the actin cytoskeleton, increased sensitivity of ACTIN to reducing agent dithiothreitol (DTT), along with the increased capacity to decompose reactive oxygen species encourage the enhanced tolerance of this mutant against oxidative stress.


Asunto(s)
Actinas , Proteínas de Arabidopsis , Arabidopsis , Mutación Missense , Estrés Oxidativo/genética , Raíces de Plantas , Actinas/genética , Actinas/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
9.
Plants (Basel) ; 10(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435621

RESUMEN

The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.

10.
Plant Cell Environ ; 44(1): 68-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32974958

RESUMEN

Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue- and organ-specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light-sheet and Airyscan confocal microscopy. FSD1-GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1-GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1-GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1-GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Osmorregulación , Raíces de Plantas , Superóxido Dismutasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Técnica del Anticuerpo Fluorescente , Germinación , Microscopía , Microscopía Confocal , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/enzimología , Semillas/metabolismo , Superóxido Dismutasa/genética
11.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297477

RESUMEN

Banana is one of the most important food and fruit crops in the world and its growth is ceasing at 10-17 °C. However, the mechanisms determining the tolerance of banana to mild (>15 °C) and moderate chilling (10-15 °C) are elusive. Furthermore, the biochemical controls over the photosynthesis in tropical plant species at low temperatures above 10 °C is not well understood. The purpose of this research was to reveal the response of chilling-sensitive banana to mild (16 °C) and moderate chilling stress (10 °C) at the molecular (transcripts, proteins) and physiological levels. The results showed different transcriptome responses between mild and moderate chilling stresses, especially in pathways of plant hormone signal transduction, ABC transporters, ubiquinone, and other terpenoid-quinone biosynthesis. Interestingly, functions related to carbon fixation were assigned preferentially to upregulated genes/proteins, while photosynthesis and photosynthesis-antenna proteins were downregulated at 10 °C, as revealed by both digital gene expression and proteomic analysis. These results were confirmed by qPCR and immunofluorescence labeling methods. Conclusion: Banana responded to the mild chilling stress dramatically at the molecular level. To compensate for the decreased photosynthesis efficiency caused by mild and moderate chilling stresses, banana accelerated its carbon fixation, mainly through upregulation of phosphoenolpyruvate carboxylases.


Asunto(s)
Respuesta al Choque por Frío , Musa/genética , Fotosíntesis , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Musa/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación hacia Arriba
12.
Front Plant Sci ; 11: 592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508859

RESUMEN

For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.

13.
ACS Chem Biol ; 15(7): 1949-1963, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32520524

RESUMEN

Cytokinins are plant hormones with biological functions ranging from coordination of plant growth to the regulation of biotic and abiotic stress-related responses and senescence. The components of the plant immune system can learn from past elicitations by microbial pathogens and herbivores and adapt to new threats. It is known that plants can enter the primed state of enhanced defense induced by either natural or synthetic compounds. While the involvement of cytokinins in defense priming has been documented, no comprehensive model of their action has been provided to date. Here, we report the functional characterization of two aromatic cytokinin derivatives, 6-benzylaminopurine-9-arabinosides (BAPAs), 3-methoxy-BAPA and 3-hydroxy-BAPA, that proved to be effective in delaying senescence in detached leaves while having low interactions with the cytokinin pathway. An RNA-seq profiling study on Arabidopsis leaves treated with 3-methoxy-BAPA revealed that short and extended treatments with this compound shifted the transcriptional response markedly toward defense. Both treatments revealed upregulation of genes involved in processes associated with plant innate immunity such as cell wall remodeling and upregulation of specific MAP kinases, most importantly MPK11, which is a MAPK module involved in stress-related signaling during the pathogen-associated molecular patterns (PAMPs) response. In addition, elevated levels of JA and its metabolites, jasmonate/ethylene-driven upregulation of PLANT DEFENSIN 1.2 (PDF1.2) and other defensins, and also temporarily elevated levels of reactive oxygen species marked the plant response to 3-methoxy-BAPA treatment. Synergistic interactions were observed when plants were cotreated with 3-hydroxy-BAPA and the flagellin-derived bacterial PAMP peptide (flg22), leading to the enhanced expression of the PAMP-triggered immunity (PTI) marker gene FRK1. Our data collectively show that some BAPAs can sensitively prime the PTI responses in a low micromolar range of concentrations while having no observable negative effects on the overall fitness of the plant.


Asunto(s)
Arabinonucleósidos/farmacología , Citocininas/farmacología , Inmunidad de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabinonucleósidos/química , Citocininas/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Molecular , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Relación Estructura-Actividad
14.
Front Plant Sci ; 11: 618835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33597960

RESUMEN

Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.

15.
Front Plant Sci ; 10: 275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936884

RESUMEN

Phospholipase D alpha 1 (PLDα1, AT3G15730) and mitogen-activated protein kinases (MAPKs) participate on signaling-dependent events in plants. MAPKs are able to phosphorylate a wide range of substrates putatively including PLDs. Here we have focused on functional regulations of PLDα1 by interactions with MAPKs, their co-localization and impact on salt stress and abscisic acid (ABA) tolerance in Arabidopsis. Yeast two-hybrid and bimolecular fluorescent assays showed that PLDα1 interacts with MPK3. Immunoblotting analyses likewise confirmed connection between both these enzymes. Subcellularly we co-localized PLDα1 with MPK3 in the cortical cytoplasm close to the plasma membrane and in cytoplasmic strands. Moreover, genetic interaction studies revealed that pldα1mpk3 double mutant was resistant to a higher salinity and showed a higher tolerance to ABA during germination in comparison to single mutants and wild type. Thus, this study revealed importance of new biochemical and genetic interactions between PLDα1 and MPK3 for Arabidopsis stress (salt and ABA) response.

16.
Front Plant Sci ; 10: 362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024579

RESUMEN

Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.

17.
Front Plant Sci ; 10: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833950

RESUMEN

Phospholipase D alpha 1 (PLDα1) is a phospholipid hydrolyzing enzyme playing multiple regulatory roles in stress responses of plants. Its signaling activity is mediated by phosphatidic acid (PA) production, capacity to bind, and modulate G-protein complexes or by interaction with other proteins. This work presents a quantitative proteomic analysis of two T-DNA insertion pldα1 mutants of Arabidopsis thaliana. Remarkably, PLDα1 knockouts caused differential regulation of many proteins forming protein complexes, while PLDα1 might be required for their stability. Almost one third of differentially abundant proteins (DAPs) in pldα1 mutants are implicated in metabolism and RNA binding. Latter functional class comprises proteins involved in translation, RNA editing, processing, stability, and decay. Many of these proteins, including those regulating chloroplast protein import and protein folding, share common functions in chloroplast biogenesis and leaf variegation. Consistently, pldα1 mutants showed altered level of TIC40 (a major regulator of protein import into chloroplast), differential accumulation of photosynthetic protein complexes and changed chloroplast sizes as revealed by immunoblotting, blue-native electrophoresis, and microscopic analyses, respectively. Our proteomic analysis also revealed that genetic depletion of PLDα1 also affected proteins involved in cell wall architecture, redox homeostasis, and abscisic acid signaling. Taking together, PLDα1 appears as a protein integrating cytosolic and plastidic protein translations, plastid protein degradation, and protein import into chloroplast in order to regulate chloroplast biogenesis in Arabidopsis.

18.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30587782

RESUMEN

Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust abundance alterations of proteins involved in mitochondrial import and electron transport chain. Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial protein import and protein quality control, as well as glucosinolate biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/biosíntesis , Proteínas Mitocondriales/metabolismo , Fosfolipasa D/metabolismo , Proteoma/metabolismo , Proteómica , Proteínas de Arabidopsis/genética , Cromatografía Líquida de Alta Presión , Endocitosis , Ontología de Genes , Fosfolipasa D/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas , Sinaptotagmina I/metabolismo , Espectrometría de Masas en Tándem , Proteína Desacopladora 1/metabolismo
19.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364855

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA) cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE). Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses) and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs), pathogenesis-related (PR) genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, ß-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase). The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.


Asunto(s)
Fusarium , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Biología Computacional/métodos , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa
20.
Front Plant Sci ; 8: 1982, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209346

RESUMEN

KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA