Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurodegener ; 13(1): 56, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333037

RESUMEN

BACKGROUND: Mitochondrial dysfunction has been implicated in the pathologies of a number of retinal degenerative diseases in both the outer and inner retina. In the outer retina, photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and sensitivity to oxidative stress. However, it is unclear how defective mitochondrial biogenesis affects neural development and contributes to neural degeneration. In this report, we investigated the in vivo function of nuclear respiratory factor 1 (Nrf1), a major transcriptional regulator of mitochondrial biogenesis in both proliferating retinal progenitor cells (RPCs) and postmitotic rod photoreceptor cells (PRs). METHODS: We used mouse genetic techniques to generate RPC-specific and rod PR-specific Nrf1 conditional knockout mouse models. We then applied a comprehensive set of tools, including histopathological and molecular analyses, RNA-seq, and electroretinography on these mouse lines to study Nrf1-regulated genes and Nrf1's roles in both developing retinas and differentiated rod PRs. For all comparisons between genotypes, a two-tailed two-sample student's t-test was used. Results were considered significant when P < 0.05. RESULTS: We uncovered essential roles of Nrf1 in cell proliferation in RPCs, cell migration and survival of newly specified retinal ganglion cells (RGCs), neurite outgrowth in retinal explants, reconfiguration of metabolic pathways in RPCs, and mitochondrial morphology, position, and function in rod PRs. CONCLUSIONS: Our findings provide in vivo evidence that Nrf1 and Nrf1-mediated pathways have context-dependent and cell-state-specific functions during neural development, and disruption of Nrf1-mediated mitochondrial biogenesis in rod PRs results in impaired mitochondria and a slow, progressive degeneration of rod PRs. These results offer new insights into the roles of Nrf1 in retinal development and neuronal homeostasis and the differential sensitivities of diverse neuronal tissues and cell types of dysfunctional mitochondria. Moreover, the conditional Nrf1 allele we have generated provides the opportunity to develop novel mouse models to understand how defective mitochondrial biogenesis contributes to the pathologies and disease progression of several neurodegenerative diseases, including glaucoma, age-related macular degeneration, Parkinson's diseases, and Huntington's disease.


Asunto(s)
Homeostasis/fisiología , Mitocondrias/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Retina/crecimiento & desarrollo , Animales , Ratones Noqueados , Ratones Transgénicos , Neurogénesis/genética , Factor Nuclear 1 de Respiración/genética , Biogénesis de Organelos , Células Ganglionares de la Retina/metabolismo , Células Madre/metabolismo
2.
PLoS One ; 4(4): e5103, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19337366

RESUMEN

BACKGROUND: More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A(+1)-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. CONCLUSIONS/SIGNIFICANCE: We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single "focused" TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.


Asunto(s)
Regiones Promotoras Genéticas , TATA Box , Transcripción Genética , Secuencia de Bases , Secuencia de Consenso , ADN , Ensayo de Cambio de Movilidad Electroforética , Genoma Humano , Células HeLa , Humanos , ARN Mensajero/genética , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales/genética
3.
J Biol Chem ; 284(13): 8621-32, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19181665

RESUMEN

Nuclear respiratory factor 1 (NRF-1) is one of the key transcriptional activators for nuclear-coded genes involved in mitochondrial biogenesis and function as well as for many housekeeping genes. A transcriptional co-activator PGC-1 and its related family member PRC have previously been shown to interact with NRF-1 and co-activate NRF-1. We show here that NRF-1 can also directly interact with poly(ADP-ribose) polymerase 1 (PARP-1) and co-purify the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex. Our in vitro binding experiments show that DNA-binding/dimerization domain of NRF-1 and the N-terminal half of PARP-1, which contains two Zinc fingers and the auto-modification domain, are responsible for the interaction, and that this interaction occurs with or without PARP-1 poly(ADP-ribosyl)ation (PARylation). DNA-bound NRF-1 can form a complex with PARP-1, suggesting that NRF-1 can recruit the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex to the promoter. PARP-1 can also PARylate the DNA-binding domain of NRF-1 and negatively regulate NRF-1.PARP-1 interaction. Transient transfection and chromatin immunoprecipitation experiments suggest that PARP-1 plays a role during transcriptional activation by NRF-1. Our finding identifies a new aspect of transcriptional regulation used by NRF-1.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transcripción Genética/fisiología , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Autoantígeno Ku , Ratones , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor Nuclear 1 de Respiración/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Regiones Promotoras Genéticas/fisiología , Estructura Terciaria de Proteína/fisiología , Dedos de Zinc/fisiología
4.
Proc Natl Acad Sci U S A ; 104(19): 7839-44, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17483474

RESUMEN

TBP-associated factor 4 (TAF4), an essential subunit of the TFIID complex acts as a coactivator for multiple transcriptional regulators, including Sp1 and CREB. However, little is known regarding the structural properties of the TAF4 subunit that lead to the coactivator function. Here, we report the crystal structure at 2.0-A resolution of the human TAF4-TAFH domain, a conserved domain among all metazoan TAF4, TAF4b, and ETO family members. The hTAF4-TAFH structure adopts a completely helical fold with a large hydrophobic groove that forms a binding surface for TAF4 interacting factors. Using peptide phage display, we have characterized the binding preference of the hTAF4-TAFH domain for a hydrophobic motif, DPsiPsizetazetaPsiPhi, that is present in a number of nuclear factors, including several important transcriptional regulators with roles in activating, repressing, and modulating posttranslational modifications. A comparison of the hTAF4-TAFH structure with the homologous ETO-TAFH domain reveals several critical residues important for hTAF4-TAFH target specificity and suggests that TAF4 has evolved in response to the increased transcriptional complexity of metazoans.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Factores Asociados con la Proteína de Unión a TATA/fisiología , Factor de Transcripción TFIID/fisiología
5.
Proc Natl Acad Sci U S A ; 104(4): 1189-94, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17227857

RESUMEN

TFIID is an essential factor required for RNA polymerase II transcription but remains poorly understood because of its intrinsic complexity. Human TAF5, a 100-kDa subunit of general transcription factor TFIID, is an essential gene and plays a critical role in assembling the 1.2 MDa TFIID complex. We report here a structural analysis of the TAF5 protein. Our structure at 2.2-A resolution of the TAF5-NTD2 domain reveals an alpha-helical domain with distant structural similarity to RNA polymerase II CTD interacting factors. The TAF5-NTD2 domain contains several conserved clefts likely to be critical for TFIID complex assembly. Our biochemical analysis of the human TAF5 protein demonstrates the ability of the N-terminal half of the TAF5 gene to form a flexible, extended dimer, a key property required for the assembly of the TFIID complex.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Conformación Proteica
6.
Mol Cell Biol ; 27(5): 1844-58, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17210644

RESUMEN

The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides -8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C(+1)-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Bases , Sitios de Unión , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Secuencia de Consenso , Células HeLa , Humanos , Neoplasias Hepáticas/patología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Unión Proteica , ARN Mensajero/análisis , Moldes Genéticos , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
7.
EMBO J ; 26(1): 79-89, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17170711

RESUMEN

Metazoans have evolved multiple paralogues of the TATA binding protein (TBP), adding another tunable level of gene control at core promoters. While TBP-related factor 1 (TRF1) shares extensive homology with TBP and can direct both Pol II and Pol III transcription in vitro, TRF1 target sites in vivo have remained elusive. Here, we report the genome-wide identification of TRF1-binding sites using high-resolution genome tiling microarrays. We found 354 TRF1-binding sites genome-wide with approximately 78% of these sites displaying colocalization with BRF. Strikingly, the majority of TRF1 target genes are Pol III-dependent small noncoding RNAs such as tRNAs and small nonmessenger RNAs. We provide direct evidence that the TRF1/BRF complex is functionally required for the activity of two novel TRF1 targets (7SL RNA and small nucleolar RNAs). Our studies suggest that unlike most other eukaryotic organisms that rely on TBP for Pol III transcription, in Drosophila and possibly other insects the alternative TRF1/BRF complex appears responsible for the initiation of all known classes of Pol III transcription.


Asunto(s)
ADN Polimerasa III/metabolismo , Genoma , Proteína 1 de Unión a Repeticiones Teloméricas/fisiología , Factor de Transcripción TFIIIB/fisiología , Transcripción Genética , Animales , Secuencia de Bases , Sitios de Unión , Inmunoprecipitación de Cromatina , Desoxirribonucleasa I/metabolismo , Drosophila melanogaster , Datos de Secuencia Molecular , Sondas de Oligonucleótidos/química , Unión Proteica , ARN Nucleolar Pequeño/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Factor de Transcripción TFIIIB/metabolismo
8.
J Virol ; 78(20): 10856-64, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15452206

RESUMEN

The X gene of hepatitis B virus (HBV) is one of the major factors in HBV-induced hepatocarcinogenesis and is essential for the establishment of productive HBV replication in vivo. Recent studies have shown that the X gene product targets mitochondria and induces calcium flux, thereby activating Ca(+)-dependent signal transduction pathways. However, regulatory mechanisms of X gene expression have remained unclear. Previous studies had localized a minimal promoter activity to a 21-bp GC-rich sequence located 130 bp upstream of the X protein coding region and showed that there was a cellular protein bound to this DNA. Interestingly, the 21-bp sequence identified as an X gene minimal promoter does not contain any previously identified core promoter elements, such as a TATA box. To better understand the mechanisms of transcriptional initiation of the X gene, we set out to biochemically purify the binding protein(s) for the 21-bp DNA. We report here the identification of the X gene minimal promoter-binding activity as nuclear respiratory factor 1 (NRF1), a previously known transcription factor that activates the majority of nucleus-encoded mitochondrial genes and various housekeeping genes. Primer extension analyses of the X mRNAs show that mutations at the binding site specifically inactivate transcription from this promoter and that a dominant-negative NRF1 mutant and short interfering RNAs inhibit transcription from this promoter. Therefore, NRF1 specifically binds the 21-bp minimal promoter and positively contributes to transcription of the X gene. Simultaneous activation of the X gene and mitochondrial genes by NRF1 may allow the X protein to target mitochondria most efficiently.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/metabolismo , Regiones Promotoras Genéticas/fisiología , Transactivadores/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HeLa , Virus de la Hepatitis B/genética , Humanos , Datos de Secuencia Molecular , Factor Nuclear 1 de Respiración , Factores Nucleares de Respiración , Regiones Promotoras Genéticas/genética , Transactivadores/química , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...