Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1461: 33-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289272

RESUMEN

Organisms receive environmental information and respond accordingly in order to survive and proliferate. Temperature is the environmental factor of most immediate importance, as exceeding its life-supporting range renders essential biochemical reactions impossible. In this chapter, we introduce the mechanisms underlying cold tolerance and temperature acclimation in a model organism-the nematode Caenorhabditis elegans, at molecular and physiological levels. Recent investigations utilizing molecular genetics and neural calcium imaging have unveiled a novel perspective on cold tolerance within the nematode worm. Notably, the ASJ neuron, previously known to possess photosensitive properties, has been found to sense temperature and regulate the sperm and gut cell-mediated pathway underlying cold tolerance. We will also explore C. elegans' cold tolerance and cold acclimation at the molecular and tissue levels.


Asunto(s)
Aclimatación , Caenorhabditis elegans , Frío , Animales , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Aclimatación/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuronas/fisiología , Neuronas/metabolismo
2.
J Neurogenet ; 34(3-4): 351-362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32316810

RESUMEN

Caenorhabditis elegans has a simple nervous system of 302 neurons. It however senses environmental cues incredibly precisely and produces various behaviors by processing information in the neural circuit. In addition to classical genetic analysis, fluorescent proteins and calcium indicators enable in vivo monitoring of protein dynamics and neural activity on either fixed or free-moving worms. These analyses have provided the detailed molecular mechanisms of neuronal and systemic signaling that regulate worm responses. Here, we focus on responses of C. elegans against temperature and review key findings that regulate thermotaxis and cold tolerance. Thermotaxis of C. elegans has been studied extensively for almost 50 years, and cold tolerance is a relatively recent concept in C. elegans. Although both thermotaxis and cold tolerance require temperature sensation, the responsible neurons and molecular pathways are different, and C. elegans uses the proper mechanisms depending on its situation. We summarize the molecular mechanisms of the major thermosensory circuit as well as the modulatory strategy through neural and tissue communication that enables fine tuning of thermotaxis and cold tolerance.


Asunto(s)
Reacción de Prevención/fisiología , Caenorhabditis elegans/fisiología , Frío/efectos adversos , Taxia/fisiología , Sensación Térmica/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Señalización del Calcio/fisiología , Dendritas/ultraestructura , Interneuronas/fisiología , Mamíferos/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Oxígeno/farmacología , Órganos de los Sentidos/inervación , Órganos de los Sentidos/fisiología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Especificidad de la Especie , Termorreceptores/fisiología
3.
EMBO Rep ; 21(3): e48671, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009302

RESUMEN

Caenorhabditis elegans mechanoreceptors located in ASG sensory neurons have been found to sense ambient temperature, which is a key trait for animal survival. Here, we show that experimental loss of xanthine dehydrogenase (XDH-1) function in AIN and AVJ interneurons results in reduced cold tolerance and atypical neuronal response to changes in temperature. These interneurons connect with upstream neurons such as the mechanoreceptor-expressing ASG. Ca2+ imaging revealed that ASG neurons respond to warm temperature via the mechanoreceptor DEG-1, a degenerin/epithelial Na+ channel (DEG/ENaC), which in turn affects downstream AIN and AVJ circuits. Ectopic expression of DEG-1 in the ASE gustatory neuron results in the acquisition of warm sensitivity, while electrophysiological analysis revealed that DEG-1 and human MDEG1 were involved in warm sensation. Taken together, these results suggest that cold tolerance is regulated by mechanoreceptor-mediated circuit calculation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Frío , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Mecanorreceptores/metabolismo , Proteínas de la Membrana , Células Receptoras Sensoriales/metabolismo , Canales de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...