Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340597

RESUMEN

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Asunto(s)
Contaminantes Ambientales , Oryza , Antioxidantes/metabolismo , Plantones , Oryza/metabolismo , Pentanoles/metabolismo , Pentanoles/farmacología , 1-Butanol/metabolismo , 1-Butanol/farmacología , Contaminantes Ambientales/metabolismo , Disulfuro de Glutatión/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Raíces de Plantas/metabolismo
2.
Cancers (Basel) ; 16(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254892

RESUMEN

BACKGROUND: The proton irradiation modality has transitioned from passive scattering (PS) to pencil beam scanning. Nevertheless, the documented outcomes predominantly rely on PS. METHODS: Thirty patients diagnosed with prostate cancer were selected to assess treatment planning across line scanning (LS), PS, and volumetric modulated arc therapy (VMAT). Dose constraints encompassed clinical target volume (CTV) D98 ≥ 73.0 Gy (RBE), rectal wall V65 < 17% and V40 < 35%, and bladder wall V65 < 25% and V40 < 50%. The CTV, rectal wall, and bladder wall dose volumes were calculated and evaluated using the Freidman test. RESULTS: The LS technique adhered to all dose limitations. For the rectal and bladder walls, 10 (33.3%) and 21 (70.0%) patients in the PS method and 5 (16.7%) and 1 (3.3%) patients in VMAT, respectively, failed to meet the stipulated requirements. The wide ranges of the rectal and bladder wall volumes (V10-70) were lower with LS than with PS and VMAT. LS outperformed VMAT across all dose-volume rectal and bladder wall indices. CONCLUSION: The LS method demonstrated a reduction in rectal and bladder doses relative to PS and VMAT, thereby suggesting the potential for mitigating toxicities.

3.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165546

RESUMEN

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pentanoles , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estomas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo
4.
Int J Radiat Oncol Biol Phys ; 118(3): 725-733, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778422

RESUMEN

PURPOSE: A prospective multicenter registry study was started May 2016 in Japan to evaluate the efficacy and safety of proton beam therapy (PBT) for hepatocellular carcinoma (HCC). METHODS AND MATERIALS: Patients who received PBT for HCC from May 2016 to June 2018 were registered in the database of the Particle Beam Therapy Committee and Subcommittee of the Japanese Society for Radiation Oncology. Overall survival (OS), progression-free survival (PFS), and local recurrence were evaluated. RESULTS: Of the 755 registered patients, 576 with initial PBT and no duplicate cancer were evaluated. At final follow-up, 322 patients were alive and 254 had died. The median follow-up period for survivors was 39 months (0-58 months). The median OS time of the 576 patients was 48.8 months (95% CI, 42.0-55.6 months) and the 1-, 2-, 3-, and 4-year OS rates were 83.8% (95% CI, 80.5%-86.6%), 68.5% (64.5%-72.2%), 58.2% (53.9%-62.2%), and 50.1% (44.9%-55.0%), respectively. Recurrence was observed in 332 patients, including local recurrence in 45 patients. The median PFS time was 14.7 months (95% CI, 12.4-17.0 months) and the 1-, 2-, 3-, and 4-year PFS rates were 55.2% (95% CI, 51.0%-59.2%), 37.5% (33.5%-41.5%), 30.2% (26.3%-34.2%), and 22.8% (18.5%-27.4%), respectively. The 1-, 2-, 3-, and 4-year OS rates were significantly higher for tumor size <5 versus 5 to 10 cm (P < .001) and <5 versus ≥10 cm (P < .001); Child-Pugh score A/B versus C (P < .001); and distance of the tumor from the gastrointestinal tract <1 versus 1 to 2 cm (P < .008) and <1 versus >2 cm (P < .001). At final follow-up, 27 patients (4.7%) had late adverse events of grade 3 or higher, with liver failure (n = 7), and dermatitis (n = 7) being most common. CONCLUSIONS: This multicenter prospective data registry indicated that PBT for HCC gives good therapeutic effects (3-year local control rate of 90%) with a low risk of severe late adverse events.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia de Protones , Humanos , Carcinoma Hepatocelular/radioterapia , Terapia de Protones/efectos adversos , Terapia de Protones/métodos , Japón , Neoplasias Hepáticas/radioterapia , Sistema de Registros
5.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824096

RESUMEN

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
mSphere ; 8(5): e0032423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37750721

RESUMEN

Increasing evidence suggests that in disease-suppressive soils, microbial volatile compounds (mVCs) released from bacteria may inhibit the growth of plant-pathogenic fungi. However, the antifungal activities and molecular responses of fungi to different mVCs remain largely undescribed. In this study, we first evaluated the responses of pathogenic fungi to treatment with mVCs from Paenarthrobacter ureafaciens. Then, we utilized the well-characterized fungal model organism Saccharomyces cerevisiae to study the potential mechanistic effects of the mVCs. Our data showed that exposure to P. ureafaciens mVCs leads to reduced growth of several pathogenic fungi, and in yeast cells, mVC exposure prompts the accumulation of reactive oxygen species. Further experiments with S. cerevisiae deletion mutants indicated that Slt2/Mpk1 and Hog1 MAPKs play major roles in the yeast response to P. ureafaciens mVCs. Transcriptomic analysis revealed that exposure to mVCs was associated with 1,030 differentially expressed genes (DEGs) in yeast. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, many of these DEGs are involved in mitochondrial dysfunction, cell integrity, mitophagy, cellular metabolism, and iron uptake. Genes encoding antimicrobial proteins were also significantly altered in the yeast after exposure to mVCs. These findings suggest that oxidative damage and mitochondrial dysfunction are major contributors to the fungal toxicity of mVCs. Furthermore, our data showed that cell wall, antioxidant, and antimicrobial defenses are induced in yeast exposed to mVCs. Thus, our findings expand upon previous research by delineating the transcriptional responses of the fungal model. IMPORTANCE Since the use of bacteria-emitted volatile compounds in phytopathogen control is of considerable interest, it is important to understand the molecular mechanisms by which fungi may adapt to microbial volatile compounds (mVCs). Paenarthrobacter ureafaciens is an isolated bacterium from disease-suppressive soil that belongs to the Actinomycetota phylum. P. ureafaciens mVCs showed a potent antifungal effect on phytopathogens, which may contribute to disease suppression in soil. However, our knowledge about the antifungal mechanism of mVCs is limited. This study has proven that mVCs are toxic to fungi due to oxidative stress and mitochondrial dysfunction. To deal with mVC toxicity, antioxidants and physical defenses are required. Furthermore, iron uptake and CAP proteins are required for antimicrobial defense, which is necessary for fungi to deal with the thread from mVCs. This study provides essential foundational knowledge regarding the molecular responses of fungi to inhibitory mVCs.


Asunto(s)
Antiinfecciosos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antifúngicos/farmacología , Suelo , Hongos , Antiinfecciosos/farmacología , Hierro
7.
Clin Transl Radiat Oncol ; 41: 100634, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37234735

RESUMEN

Background and purpose: To examine the role of proton beam therapy (PBT) in the treatment of extrahepatic biliary tract cancer (EBC). Methods and materials: We analyzed the data accumulated in the Proton-Net database, which prospectively registered all individual patient data treated with PBT in all Japanese proton institutions from May 2016 to June 2019. The primary endpoint was overall survival (OS), and the secondary endpoints were local control (LC), progression-free survival (PFS), and toxicity. Results: Ninety-three patients with unresectable and/or recurrent EBC were treated with PBT using a median prescribed dose of 67.5 Gy (RBE) (range, 50-72.6 Gy) in 25 (22-30 fractions). With a median follow-up of 16.3 months, the median survival time was 20.1 months and the 2-year OS was 37.8%. Two-year PFS and LC rates were 20.6% and 66.5%, respectively. Poor liver function (Child-Pugh B, C), a narrower distance between the tumor and digestive tract (2 cm >), and a larger tumor diameter (2 cm <) were identified as poor prognostic factors for OS. PBT-related grade 3 ≤ acute and late adverse events occurred in 5.4% and 4.3% of patients, respectively, including one gastrointestinal late toxicity (duodenal ulcer). Conclusions: This is the largest prospectively accumulated series of PBT for EBC, and PBT showed favorable outcomes with acceptable toxicity profiles.

8.
J Radiat Res ; 64(Supplement_1): i49-i58, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37185773

RESUMEN

To assess the safety and efficacy of proton beam therapy (PBT) for muscle-invasive bladder cancer (MIBC), we examined the outcomes of 36 patients with MIBC (cT2-4aN0M0) who were enrolled in the Proton-Net prospective registry study and received PBT with concurrent chemotherapy from May 2016 to June 2018. PBT was also compared with X-ray chemoradiotherapy in a systematic review (X-ray (photon) radiotherapy). The radiotherapy consisted of 40-41.4 Gy (relative biological effectiveness (RBE) delivered in 20-23 fractions to the pelvic cavity or the entire bladder using X-rays or proton beams, followed by a boost of 19.8-36.3 Gy (RBE) delivered in 10-14 fractions to all tumor sites in the bladder. Concurrently, radiotherapy was given with intra-arterial or systemic chemotherapy of cisplatin alone or in combination with methotrexate or gemcitabine. Overall survival (OS), progression-free survival (PFS) and local control (LC) rates were 90.8, 71.4 and 84.6%, respectively, after 3 years. Only one case (2.8%) experienced a treatment-related late adverse event of Grade 3 urinary tract obstruction, and no severe gastrointestinal adverse events occurred. According to the findings of the systematic review, the 3-year outcomes of XRT were 57-84.8% in OS, 39-78% in PFS and 51-68% in LC. The weighted mean frequency of adverse events of Grade 3 or higher in the gastrointestinal and genitourinary systems was 6.2 and 2.2%, respectively. More data from long-term follow-up will provide us with the appropriate use of PBT and validate its efficacy for MIBC.


Asunto(s)
Terapia de Protones , Neoplasias de la Vejiga Urinaria , Humanos , Protones , Terapia de Protones/efectos adversos , Neoplasias de la Vejiga Urinaria/radioterapia , Sistema de Registros , Músculos , Estudios Multicéntricos como Asunto
9.
FEBS Lett ; 597(3): 407-417, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645411

RESUMEN

Endosperm-embryo development in flowering plants is regulated coordinately by signal exchange during seed development. However, such a reciprocal control mechanism has not been clearly identified. In this study, we identified an endosperm-specific gene, LBD35, expressed in an embryonic development-dependent manner, by a comparative transcriptome and cytological analyses of double-fertilized and single-fertilized seeds prepared by using the kokopelli mutant, which frequently induces single fertilization events. Transcriptome analysis using LBD35 as a marker of the central cell fertilization event identified that 141 genes, including 31 genes for small cysteine-rich peptides, are expressed in a double fertilization-dependent manner. Our results reveal possible embryonic signals that regulate endosperm gene expression and provide a practicable method to identify genes involved in the communication during endosperm-embryo development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Endospermo/genética , Endospermo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/genética , Semillas/metabolismo , Desarrollo Embrionario , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
10.
Plant Cell Physiol ; 64(1): 117-123, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36264192

RESUMEN

Apomixis, defined as the transfer of maternal germplasm to offspring without fertilization, enables the fixation of F1-useful traits, providing advantages in crop breeding. However, most apomictic plants require pollination to produce the endosperm. The endosperm is essential for embryogenesis, and its development is suppressed until fertilization. We show that the expression of a chimeric repressor of the Elongation of Siliques without Pollination 3 (ESP3) gene (Pro35S:ESP3-SRDX) induces ovule enlargement without fertilization in Arabidopsis thaliana. The ESP3 gene encodes a protein similar to the flowering Wageningen homeodomain transcription factor containing a StAR-related lipid transfer domain. However, ESP3 lacks the homeobox-encoding region. Genes related to the cell cycle and sugar metabolism were upregulated in unfertilized Pro35S:ESP3-SRDX ovules similar to those in fertilized seeds, while those related to autophagy were downregulated similar to those in fertilized seeds. Unfertilized Pro35S:ESP3-SRDX ovules partially nourished embryos when only the egg was fertilized, accumulating hexoses without central cell proliferation. ESP3 may regulate nutrient flow during seed development, and ESP3-SRDX could be a useful tool for complete apomixis that does not require pseudo-fertilization.


Asunto(s)
Arabidopsis , Polinización , Semillas/metabolismo , Endospermo/genética , Reproducción , Arabidopsis/genética , Desarrollo Embrionario , Óvulo Vegetal/genética
11.
Plant Mol Biol ; 111(1-2): 21-36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36109466

RESUMEN

KEY MESSAGE: Plant-deleterious microbial volatiles activate the transactivation of hypoxia, MAMPs and wound responsive genes in Arabidopsis thaliana. AtMKK1 and AtMKK3 are involved in the plant-deleterious microbial volatiles-induced defense responses. Microbial volatile compounds (mVCs) are a collection of volatile metabolites from microorganisms with biological effects on all living organisms. mVCs function as gaseous modulators of plant growth and plant health. In this study, the defense events induced by plant-deleterious mVCs were investigated. Enterobacter aerogenes VCs lead to growth inhibition and immune responses in Arabidopsis thaliana. E. aerogenes VCs negatively regulate auxin response and transport gene expression in the root tip, as evidenced by decreased expression of DR5::GFP, PIN3::PIN3-GFP and PIN4::PIN4-GFP. Data from transcriptional analysis suggests that E. aerogenes VCs trigger hypoxia response, innate immune responses and metabolic processes. In addition, the transcript levels of the genes involved in the synthetic pathways of antimicrobial metabolites camalexin and coumarin are increased after the E. aerogenes VCs exposure. Moreover, we demonstrate that MKK1 serves as a regulator of camalexin biosynthesis gene expression in response to E. aerogenes VCs, while MKK3 is the regulator of coumarin biosynthesis gene expression. Additionally, MKK1 and MKK3 mediate the E. aerogenes VCs-induced callose deposition. Collectively, these studies provide molecular insights into immune responses by plant-deleterious mVCs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indoles/metabolismo , Plantas/metabolismo , Cumarinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
12.
Plant Physiol ; 191(1): 463-478, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342216

RESUMEN

Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óvulo Vegetal , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo
13.
Plant Biotechnol (Tokyo) ; 40(1): 117-121, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38213916

RESUMEN

Piriformospora indica, which is an endophytic fungus that grows on various media in the absence of a host, emits plant growth promoting volatile organic compounds (VOCs). Kaefer medium (KF) has been shown to be the most suitable medium for P. indica growth; however, different media may differentially affect fungal metabolism which may in turn influence the VOC profiles of P. indica. To date, how the VOCs emitted from P. indica cultured on different media affect plant growth has not been well characterized. Here, we show that poor nutrient medium (PNM) promoted the growth of P. indica more effectively than potato dextrose agar (PDA) or KF medium. By contrast, plant total biomass and root fresh weight were increased 1.8-fold and 2.1-fold, when co-cultivated with P. indica cultured on PDA medium in comparison with KF or PNM medium, respectively. Furthermore, sucrose in the plant culture medium downregulated the fold-induction ratio of the plant growth promoted by P. indica VOCs.

14.
Cancers (Basel) ; 14(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497346

RESUMEN

To examine the efficacy and toxicity of particle beam therapy (PT) for biliary duct carcinoma (BDC) and compare the outcomes between extrahepatic BDC (eBDC) and intrahepatic BDC (iBDC). We analyzed multi-institutional data from May 2009 to December 2019. The primary endpoint was overall survival (OS), and the secondary endpoints were local control (LC), progression-free survival (PFS) and toxicity. We included 150 patients with unresectable BDC treated with PT using a median prescribed dose of 70.2 GyRBE (range, 44-77 GyRBE) in 25 fractions (range, 10-38 fractions). With a median follow-up of 13.0 months, median survival time (MST) was 21 months, and 2-year OS was 44.8%. For eBDC and iBDC, the MSTs were 20 and 23 months, respectively. Two-year PFS and LC rates were 20.6% and 66.5%, respectively. Vascular invasion, prescribed dose and serum tumor marker level (carcinoembryonic antigen: CEA) were identified as poor prognostic factors for OS. A higher radiation dose EQD2 ≥ 67 Gy showed superior OS, with a hazard ratio of 0.341. The radiation dose of PT is an important predisposing factor for overall survival. The MST for patients with eBDC given a higher radiation dose was 25 months, compared to 15 months for those given the lower dose and 23 months for patients with iBDC (all iBDC given higher doses). iBDC and eBDC duct carcinomas showed equivalent outcomes with PT, especially when treated with a high radiation dose. In detailed analysis, baseline CEA level in iBDC, and radiation dose and GTV in eBDC were statistically significant predicators for OS. Acute and late toxicity grade ≥3 occurred in 2.2% and 2.7% of patients, respectively, including two late grade-5 toxicities. In conclusion, PT showed good efficacy for BDC, both eBDC and iBDC, with a low incidence of severe toxicity.

15.
Plant Biotechnol (Tokyo) ; 39(2): 185-189, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937534

RESUMEN

The brassinosteroid (BR) phytohormone is an important regulator of plant growth. To identify novel transcription factors that regulate BR responses, we screened chimeric repressor gene silencing technology (CRES-T) plants, in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, with brassinazole (Brz), an inhibitor of BR biosynthesis. We identified that a line that expressed the chimeric repressor for zinc finger homeobox transcription factor, BRASSINOSTEORID-RELATED-HOMEOBOX-2 (BHB2-sx), exhibited Brz-hypersensitive phenotype with shorter hypocotyl under dark, dwarf and round and dark green leaves similar to BR-deficient phenotype. Similar to BHB2-sx plants, bhb2 knockout mutant also exhibited Brz hypersensitive phenotype. In contrast, ectopic expression of BHB2 (BHB2-ox) showed hypocotyl elongation phenotype (BR excessive), showing decrease to Brz sensitivity. The expression of the DWF4 and CPD BR biosynthesis genes was repressed in BHB2-sx plants, whereas it was enhanced in BHB2-ox plants. The BR deficient-like phenotype of BHB2-sx plants was partially restored by treatment with brassinolide (BL), indicating that the BR deficient phenotype of BHB2-sx plant may be due to suppression of BR biosynthesis. Our results indicate that BHB2 is a positive regulator of BR response may be due to the promotion of BR biosynthesis genes.

16.
Plant Biotechnol (Tokyo) ; 39(2): 209-214, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937537

RESUMEN

Brassinosteroid (BR) is a phytohormone that acts as important regulator of plant growth. To identify novel transcription factors that may be involved in unknown mechanisms of BR signaling, we screened the chimeric repressor expressing plants (CRES-T), in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, to identify those that affect the expression of BR inducible genes. Here, we identified a homeobox-leucine zipper type transcription factor, BRASSINOSTEROID-RELATED-HOMEOBOX 3 (BHB3), of which a chimeric repressor expressing plants (BHB3-sx) significantly downregulated the expression of BAS1 and SAUR-AC1 that are BR inducible genes. Interestingly, ectopic expression of BHB3 (BHB3-ox) also repressed the BR inducible genes and shorten hypocotyl that would be similar to a BR-deficient phenotype. Interestingly, both BHB3-sx and BHB3-ox showed pale green phenotype, in which the expression of genes related photosynthesis and chlorophyll contents were significantly decreased. We found that BHB3 contains three motifs similar to the conserved EAR-repression domain, suggesting that BHB3 may act as a transcriptional repressor. These results indicate that BHB3 might play an important role not only to the BR signaling but also the regulation of greenings.

17.
Plant J ; 111(2): 595-607, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35510416

RESUMEN

Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo/genética , Plantas Modificadas Genéticamente/metabolismo , Receptores de Glucocorticoides/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Intern Med ; 61(8): 1299-1304, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34615820

RESUMEN

An 18-year-old man presented with sudden vision loss in his left eye. Magnetic resonance imaging revealed a tumor that had invaded the left optic nerve, originating from the left posterior ethmoid sinus. Immunohistochemical analyses identified positive staining for NUT protein in the nuclei of tumor cells. We diagnosed locally advanced NUT carcinoma (NC) and initiated concurrent chemoradiotherapy (CCRT), consisting of chemotherapy with vincristine, doxorubicin, and cyclophosphamide, alternating with ifosphamide and etoposide, plus radiation therapy. The patient achieved a complete response. CCRT can be a useful treatment option for adolescent and young-adult patients with locally advanced unresectable NC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia , Humanos , Ifosfamida/uso terapéutico , Masculino , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Vincristina/uso terapéutico
19.
Nat Plants ; 7(5): 633-643, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007039

RESUMEN

The molecular basis of the competence of the pericycle cell to initiate lateral root primordium formation is totally unknown. Here, we report that in Arabidopsis, two types of basic helix-loop-helix (bHLH) transcription factors, named PERICYCLE FACTOR TYPE-A (PFA) proteins and PERICYCLE FACTOR TYPE-B (PFB) proteins, govern the competence of pericycle cells to initiate lateral root primordium formation. Overexpression of PFA genes confers hallmark pericycle characteristics, including specific marker gene expression and auxin-induced cell division, and multiple loss-of-function mutations in PFA genes or the repression of PFB target genes results in the loss of this specific pericycle function. PFA and PFB proteins physically interact and are under mutual- and self-regulation, forming a positive feedback loop. This study unveils the transcriptional regulatory system that determines pericycle participation in lateral root initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963081

RESUMEN

Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/metabolismo , Nitrógeno/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosforilación , Fotoperiodo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA