Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23391, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145327

RESUMEN

Adipocytes play a key role in energy storage and homeostasis. Although the role of transcription factors in adipocyte differentiation is known, the effect of endogenous metabolites of low molecular weight remains unclear. Here, we analyzed time-dependent changes in the levels of these metabolites throughout adipocyte differentiation, using metabolome analysis, and demonstrated that there is a positive correlation between cyclic adenosine diphosphate ribose (cADPR) and Pparγ mRNA expression used as a marker of differentiation. We also found that the treatment of C3H10T1/2 adipocytes with cADPR increased the mRNA expression of those marker genes and the accumulation of triglycerides. Furthermore, inhibition of ryanodine receptors (RyR), which are activated by cADPR, caused a significant reduction in mRNA expression levels of the marker genes and triglyceride accumulation in adipocytes. Our findings show that cADPR accelerates adipocytic differentiation via RyR pathway.


Asunto(s)
Adipocitos , ADP-Ribosa Cíclica , Ratones , Animales , ADP-Ribosa Cíclica/metabolismo , Adipocitos/metabolismo , Factores de Transcripción/metabolismo , PPAR gamma/metabolismo , Metaboloma , ARN Mensajero/genética , Diferenciación Celular , Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/farmacología , Adipogénesis/genética , Células 3T3-L1
2.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194987, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739218

RESUMEN

The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.


Asunto(s)
Óxido Nítrico , PPAR alfa , Animales , Ratones , PPAR alfa/genética , PPAR alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Regulación hacia Abajo , Adipocitos/metabolismo , Inflamación/genética , Obesidad
3.
Biosci Biotechnol Biochem ; 87(7): 747-757, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37024261

RESUMEN

Soy isoflavones have been shown to have anti-inflammatory properties; however, the anti-inflammatory effects of isoflavone metabolites produced during soybean germination remain unclear. We found that the daidzein and genistein derivatives, 8-prenyl daidzein (8-PD) and 8-prenyl genistein (8-PG), demonstrated a more potent effect than daidzein and genistein on repressing inflammatory responses in macrophages. Although IkB protein levels were unaltered, 8-PD and 8-PG repressed nuclear factor kappa B (NF-κB) activation, which was associated with reduced ERK1/2, JNK, and p38 MAPK activation and suppressed mitogen- and stress-activated kinase 1 phosphorylation. Inflammatory responses induced by the medium containing hypertrophic adipocyte secretions were successfully suppressed by 8-PD and 8-PG treatment. In the ex vivo study, 8-PD and 8-PG significantly inhibited proinflammatory C-C motif chemokine ligand 2 (CCL2) secretion from the adipose tissues of mice fed a long-term high-fat diet. The data suggest that 8-PD and 8-PG could regulate macrophage activation under obesity conditions.


Asunto(s)
Genisteína , Isoflavonas , Ratones , Animales , Genisteína/farmacología , Genisteína/metabolismo , Glycine max/metabolismo , Isoflavonas/farmacología , Isoflavonas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología
4.
iScience ; 26(3): 106161, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895651

RESUMEN

The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.

5.
Eur J Pharmacol ; 947: 175682, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965744

RESUMEN

In the treatment of type 2 diabetes mellitus (T2DM), comprehensive management of multiple risk factors, such as blood glucose, body weight, and lipids, is important to prevent disease progression. Although the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor is often used clinically, the effects of this combination, other than glucose metabolism, have yet to be thoroughly investigated. In this study, we evaluated the effects of combined treatment with a DPP-4 inhibitor, teneligliptin, and an SGLT2 inhibitor, canagliflozin, on the body weight and lipid metabolism in high-fat diet (HFD)-induced obese mice. We found that monotherapy with teneligliptin or canagliflozin showed suppressive effects on high-fat diet-induced body weight gain and reduced inguinal white adipose tissue (iWAT) mass, and combined treatment additively reduced body weight gain and iWAT mass. Teneligliptin significantly increased oxygen consumption during the light phase, and this effect was preserved in the combined treatment. The combined treatment did not alter the mRNA expression levels of thermogenesis-related genes in adipose tissue but showed the tendency to additively induce mRNA of fatty acid oxidation-related genes in brown adipose tissue and tended to additively decrease mRNA of fatty acid synthesis-related genes in iWAT and liver tissues. These results suggest that combined treatment with teneligliptin and canagliflozin additively suppresses HFD-induced body weight gain with increasing oxygen consumption and modulating the expression of lipid metabolism-related genes. This combination therapy may provide effective body weight management for patients with T2DM and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Aumento de Peso , Peso Corporal , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , ARN Mensajero/metabolismo , Ácidos Grasos , Expresión Génica
6.
Nucleic Acids Res ; 51(D1): D660-D677, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36417935

RESUMEN

The identification of unknown chemicals has emerged as a significant issue in untargeted metabolome analysis owing to the limited availability of purified standards for identification; this is a major bottleneck for the accumulation of reusable metabolome data in systems biology. Public resources for discovering and prioritizing the unknowns that should be subject to practical identification, as well as further detailed study of spending costs and the risks of misprediction, are lacking. As such a resource, we released databases, Food-, Plant- and Thing-Metabolome Repository (http://metabolites.in/foods, http://metabolites.in/plants, and http://metabolites.in/things, referred to as XMRs) in which the sample-specific localization of unknowns detected by liquid chromatography-mass spectrometry in a wide variety of samples can be examined, helping to discover and prioritize the unknowns. A set of application programming interfaces for the XMRs facilitates the use of metabolome data for large-scale analysis and data mining. Several applications of XMRs, including integrated metabolome and genome analyses, are presented. Expanding the concept of XMRs will accelerate the identification of unknowns and increase the discovery of new knowledge.


Asunto(s)
Bases de Datos Factuales , Metaboloma , Metabolómica , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos
7.
Biochem J ; 479(21): 2279-2296, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36256829

RESUMEN

Certain metabolic intermediates produced during metabolism are known to regulate a wide range of cellular processes. Methylglyoxal (MG), a natural metabolite derived from glycolysis, has been shown to negatively influence systemic metabolism by inducing glucose intolerance, insulin resistance, and diabetic complications. MG plays a functional role as a signaling molecule that initiates signal transduction. However, the specific relationship between MG-induced activation of signal transduction and its negative effects on metabolism remains unclear. Here, we found that MG activated mammalian target of rapamycin complex 1 (mTORC1) signaling via p38 mitogen-activated protein kinase in adipocytes, and that the transforming growth factor-ß-activated kinase 1 (TAK1) is needed to activate p38-mTORC1 signaling following treatment with MG. We also found that MG increased the phosphorylation levels of serine residues in insulin receptor substrate (IRS)-1, which is involved in its negative regulation, thereby attenuating insulin-stimulated tyrosine phosphorylation in IRS-1. The negative effect of MG on insulin-stimulated IRS-1 tyrosine phosphorylation was exerted due to the MG-induced activation of the TAK1-p38-mTORC1 signaling axis. The involvement of the TAK1-p38-mTORC1 signaling axis in the induction of IRS-1 multiple serine phosphorylation was not unique to MG, as the proinflammatory cytokine, tumor necrosis factor-α, also activated the same signaling axis. Therefore, our findings suggest that MG-induced activation of the TAK1-p38-mTORC1 signaling axis caused multiple serine phosphorylation on IRS-1, potentially contributing to insulin resistance.


Asunto(s)
Resistencia a la Insulina , Piruvaldehído , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Resistencia a la Insulina/fisiología , Serina/metabolismo , Transducción de Señal/fisiología , Adipocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Tirosina/metabolismo , Fosfoproteínas/metabolismo
8.
J Biol Chem ; 298(10): 102456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063990

RESUMEN

Adipocyte browning is one of the potential strategies for the prevention of obesity-related metabolic syndromes, but it is a complex process. Although previous studies make it increasingly clear that several transcription factors and enzymes are essential to induce browning, it is unclear what dynamic and metabolic changes occur in induction of browning. Here, we analyzed the effect of a beta-adrenergic receptor agonist (CL316243, accelerator of browning) on metabolic change in mice adipose tissue and plasma using metabolome analysis and speculated that browning is regulated partly by inosine 5'-monophosphate (IMP) metabolism. To test this hypothesis, we investigated whether Ucp-1, a functional marker of browning, mRNA expression is influenced by IMP metabolism using immortalized adipocytes. Our study showed that mycophenolic acid, an IMP dehydrogenase inhibitor, increases the mRNA expression of Ucp-1 in immortalized adipocytes. Furthermore, we performed a single administration of mycophenolate mofetil, a prodrug of mycophenolic acid, to mice and demonstrated that mycophenolate mofetil induces adipocyte browning and miniaturization of adipocyte size, leading to adipose tissue weight loss. These findings showed that IMP metabolism has a significant effect on adipocyte browning, suggesting that the regulator of IMP metabolism has the potential to prevent obesity.


Asunto(s)
Adipocitos , Inosina Monofosfato , Ácido Micofenólico , Animales , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Inosina Monofosfato/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Ácido Micofenólico/farmacología , Ácido Micofenólico/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo
9.
PLoS One ; 17(7): e0267248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776737

RESUMEN

Adiponectin, an adipokine, regulates glucose metabolism and insulin sensitivity through the adiponectin receptor (AdipoR). In this study, we searched for metabolites that activate the adiponectin signaling pathway from tomato (Solanum lycopersicu). Metabolites of mature tomato were separated into 55 fractions by liquid chromatography, and then each fraction was examined using the phosphorylation assay of AMP-protein kinase (AMPK) in C2C12 myotubes and in AdipoR-knockdown cells by small interfering RNA (siRNA). Several fractions showed AMPK phosphorylation in C2C12 myotubes and siRNA-mediated abrogation of the effect. Non-targeted metabolite analysis revealed the presence of 721 diverse metabolites in tomato. By integrating the activity of fractions on AMPK phosphorylation and the 721 metabolites based on their retention times of liquid chromatography, we performed a comprehensive screen for metabolites that possess adiponectin-like activity. As the screening suggested that the active fractions contained four carotenoids, we further analyzed ß-carotene and lycopene, the major carotenoids of food. They induced AMPK phosphorylation via the AdipoR, Ca2+/calmodulin-dependent protein kinase kinase and Ca2+ influx, in addition to activating glucose uptake via AdipoR in C2C12 myotubes. All these events were characteristic adiponectin actions. These results indicated that the food-derived carotenoids, ß-carotene and lycopene, activate the adiponectin signaling pathway, including AMPK phosphorylation.


Asunto(s)
Adiponectina , Solanum lycopersicum , Proteínas Quinasas Activadas por AMP/metabolismo , Adenilato Quinasa/metabolismo , Adiponectina/metabolismo , Bioensayo , Calcio/metabolismo , Licopeno/metabolismo , Solanum lycopersicum/genética , Fosforilación , ARN Interferente Pequeño/metabolismo , Receptores de Adiponectina/metabolismo , Transducción de Señal , beta Caroteno/metabolismo
10.
Biosci Biotechnol Biochem ; 86(3): 380-389, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34935880

RESUMEN

Uncoupling protein 1 (UCP1) in brown or beige adipocytes is a mitochondrial protein that is expected to enhance whole-body energy expenditure. For the high-throughput screening of UCP1 transcriptional activity regulator, we established a murine inguinal white adipose tissue-derived Ucp1-luciferase reporter preadipocyte line. Using this reporter preadipocyte line, 654 flavor compounds were screened, and a novel Ucp1 expression-inducing compound, 5-methylquinoxaline, was identified. Adipocytes treated with 5-methylquinoxaline showed increased Ucp1 mRNA expression levels and enhanced oxygen consumption. 5-Methylquinoxaline induced Ucp1 expression through peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and 5-methylquinoxaline-induced PGC1α activation seemed to be partially regulated by its phosphorylation or deacetylation. Thus, our Ucp1-luciferase reporter preadipocyte line is a useful tool for screening of Ucp1 inductive compounds.


Asunto(s)
Proteína Desacopladora 1
11.
EuroIntervention ; 17(11): e925-e931, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34647891

RESUMEN

BACKGROUND: Caffeine intake from one cup of coffee one hour before adenosine stress tests, corresponding to serum caffeine levels of 3-4 mg/L, is thought to be acceptable for non-invasive imaging. AIMS: We aimed to elucidate whether serum caffeine is independently associated with adenosine-induced fractional flow reserve (FFR) overestimation and their concentration-response relationship. METHODS: FFR was measured using adenosine (FFRADN) and papaverine (FFRPAP) in 209 patients. FFRADN overestimation was defined as FFRADN - FFRPAP. The locally weighted scatterplot smoothing (LOWESS) approach was applied to evaluate the relationship between serum caffeine level and FFRADN overestimation. Multiple regression analysis was used to determine independent factors associated with FFRADN overestimation. RESULTS: Caffeine was ingested at <12 hours in 85 patients, at 12-24 hours in 35 patients, and at >24 hours in 89 patients. Multiple regression analysis identified serum caffeine level as the strongest factor associated with FFRADN overestimation (p<0.001). The LOWESS curve demonstrated that FFRADN overestimation started from just above the lower detection limit of serum caffeine and increased approximately 0.01 FFR unit per 1 mg/L increase in serum caffeine level with a linear relationship. The 90th percentile of serum caffeine levels for the ≤12-hour, the 12-24-hour, and the >24-hour groups corresponded to FFRADN overestimations by 0.06, 0.03, and 0.02, respectively. CONCLUSIONS: Serum caffeine overestimates FFRADN values in a linear concentration-response manner. FFRADN overestimation occurs at much lower serum caffeine levels than those that were previously believed. Our results highlight that standardised caffeine control is required for reliable adenosine-induced FFR measurements.


Asunto(s)
Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Hiperemia , Adenosina , Cafeína/farmacología , Angiografía Coronaria , Humanos , Papaverina/farmacología , Valor Predictivo de las Pruebas , Vasodilatadores
12.
Biochem Biophys Rep ; 28: 101127, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34527816

RESUMEN

Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.

13.
PLoS One ; 16(7): e0254190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214105

RESUMEN

Several isoflavonoids are well known for their ability to act as soybean phytoalexins. However, the overall effects of the soybean-Aspergillus oryzae interaction on metabolism remain largely unknown. The aim of this study is to reveal an overview of nutritive and metabolic changes in germinated and A. oryzae-elicited soybeans. The levels of individual nutrients were measured using the ustulation, ashing, Kjeldahl, and Folch methods. The levels of individual amino acids were measured using high-performance liquid chromatography. Low-molecular-weight compounds were measured through metabolome analysis using liquid chromatography-mass spectrometry. Although the levels of individual nutrients and amino acids were strongly influenced by the germination process, the elicitation process had little effect on the change in the contents of individual nutrients and amino acids. However, after analyzing approximately 700 metabolites using metabolome analysis, we found that the levels of many of the metabolites were strongly influenced by soybean-A. oryzae interactions. In particular, the data indicate that steroid, terpenoid, phenylpropanoid, flavonoid, and fatty acid metabolism were influenced by the elicitation process. Furthermore, we demonstrated that not the germination process but the elicitation process induced daidzein prenylation, suggesting that the soybean-A. oryzae interactions produce various phytoalexins that are valuable for health promotion and/or disease prevention.


Asunto(s)
Aspergillus oryzae/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Metaboloma/fisiología , Prenilación/fisiología , Aminoácidos/metabolismo , Fermentación/fisiología , Flavonoides/metabolismo , Germinación/fisiología , Nutrientes/metabolismo , Extractos Vegetales/metabolismo
14.
Diabetes Metab Syndr Obes ; 13: 4353-4359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33235475

RESUMEN

PURPOSE: Sodium-glucose co-transporter-2 (SGLT2) inhibitors have various pleiotropic effects, including body weight reduction, and therefore have the potential to be used in various applications. However, such effects have not been fully investigated; thus, non-clinical studies using animal models are needed. In animal experiments, SGLT2 inhibitors are usually administered by oral or dietary methods. However, the detailed characteristics of these dosing methods, especially to induce their pleiotropic effects, have not been reported. Therefore, we compared the preventive effects of canagliflozin, an SGLT2 inhibitor, on body weight gain following oral gavage and dietary administration methods in a mouse model of diet-induced obesity. METHODS: Canagliflozin was dosed by oral gavage or dietary administration for 9 weeks to 6-week-old C57BL/6N mice fed a high-fat diet, and parameters related to obesity were evaluated. RESULTS: The suppression of body weight gain, fat mass, and hepatic lipid content was observed following both dosing methods, whereas the effect on body weight tended to be stronger in the dietary administration group. In adipose tissue, fatty acid synthase expression was significantly decreased in the dietary administration group, and its expression was significantly correlated with fat mass. However, the expression of genes related to fatty acid oxidation was unchanged, indicating that the preventive effect on body weight gain was mediated mainly through the suppression of lipid synthesis rather than the promotion of lipid oxidation. CONCLUSION: Canagliflozin prevented body weight gain through the suppression of lipid synthesis via both dosing methods, although there were some differences in the efficacy. The findings of our study can help to identify new mechanisms of action of SGLT2 inhibitors and potential applications.

15.
J Biol Chem ; 295(20): 7033-7045, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32273338

RESUMEN

Browning of adipose tissue is induced by specific stimuli such as cold exposure and consists of up-regulation of thermogenesis in white adipose tissue. Recently, it has emerged as an attractive target for managing obesity in humans. Here, we performed a comprehensive analysis to identify genes associated with browning in murine adipose tissue. We focused on glycerol kinase (GYK) because its mRNA expression pattern is highly correlated with that of uncoupling protein 1 (UCP1), which regulates the thermogenic capacity of adipocytes. Cold exposure-induced Ucp1 up-regulation in inguinal white adipose tissue (iWAT) was partially abolished by Gyk knockdown (KD) in vivo Consistently, the Gyk KD inhibited Ucp1 expression induced by treatment with the ß-adrenergic receptors (ßAR) agonist isoproterenol (Iso) in vitro and resulted in impaired uncoupled respiration. Gyk KD also suppressed Iso- and adenylate cyclase activator-induced transcriptional activation and phosphorylation of the cAMP response element-binding protein (CREB). However, we did not observe these effects with a cAMP analog. Therefore Gyk KD related to Iso-induced cAMP products. In Iso-treated Gyk KD adipocytes, stearoyl-CoA desaturase 1 (SCD1) was up-regulated, and monounsaturated fatty acids such as palmitoleic acid (POA) accumulated. Moreover, a SCD1 inhibitor treatment recovered the Gyk KD-induced Ucp1 down-regulation and POA treatment down-regulated Iso-activated Ucp1 Our findings suggest that Gyk stimulates Ucp1 expression via a mechanism that partially depends on the ßAR-cAMP-CREB pathway and Gyk-mediated regulation of fatty acid metabolism.


Asunto(s)
Adipocitos Beige/metabolismo , Frío , Ácidos Grasos/metabolismo , Glicerol Quinasa/metabolismo , Sistemas de Mensajero Secundario , Termogénesis , Activación Transcripcional , Proteína Desacopladora 1/biosíntesis , Adipocitos Beige/citología , Animales , AMP Cíclico/genética , AMP Cíclico/metabolismo , Ácidos Grasos/genética , Glicerol Quinasa/genética , Isoproterenol/farmacología , Masculino , Ratones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína Desacopladora 1/genética
16.
Mol Nutr Food Res ; 64(10): e2000015, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32281228

RESUMEN

SCOPE: Dietary soy reportedly protects from diabetic nephropathy (DN), but its active components and mechanism of action remain unknown. METHODS AND RESULTS: In this study, KKAy mice are fed three types of diet: Dietary soy isoflavones with soy protein (Soy-IP) diet, reduced isoflavones soy protein (RisoP), and oral administration of isoflavones aglycones (IsoAgc). Albuminuria and glycosuria are decreased only in the soy-IP group. The risoP group show reduced expansion of mesangial matrix and renal fibrosis, the IsoAgc group show renal anti-fibrotic and anti-inflammatory effects; however, these renal pathological changes are repressed in the soy-IP group, suggesting the distinct protective roles of soy protein or isoflavones in DN. The isoflavone genistein has a better inhibitory effect on the inflammatory response and cellular interactions in both mouse tubular cells and macrophages when exposed to high glucose and albumin (HGA). Genistein also represses HGA-induced activator protein 1 activation and reactive oxidases stress generation, accompanied by reduced NADPH oxidase (NOX) gene expression. Finally, diabetic mice show a decrease in lipid peroxidation levels in both plasma and urine, along with lower NOXs gene expression. CONCLUSION: The data elucidate the detailed mechanism by which isoflavones inhibit renal inflammation and provide a potential practical adjunct therapy to restrict DN progression.


Asunto(s)
Antioxidantes/farmacología , Nefropatías Diabéticas/dietoterapia , Isoflavonas/farmacología , Albuminuria/dietoterapia , Animales , Antiinflamatorios/farmacología , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/prevención & control , Suplementos Dietéticos , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Genisteína/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Endogámicos , Nefritis/dietoterapia , Nefritis/etiología , Nefritis/patología , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Soja/farmacología
17.
Biosci Biotechnol Biochem ; 84(2): 305-313, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31601163

RESUMEN

Specific conditions, such as exposure to cold, can induce the production of brown-like adipocytes in white adipose tissue. These adipocytes express high levels of uncoupling protein 1 (UCP1) and energy expended by generating heat. Thus, these are a potential target for the prevention or treatment of obesity. The present study involved a comprehensive analysis of the adipose tissue to understand the relationship between long non-coding RNA (lncRNA) 2310069B03Rik and UCP1. Cold exposure increased both lncRNA 2310069B03Rik and Ucp1 expression in inguinal white adipose tissue (iWAT). However, overexpression of lncRNA 2310069B03Rik suppressed the Ucp1 mRNA expression and the promoter activity of UCP1 in the iWAT primary adipocytes. In addition, compared to the early induction of Ucp1 expression by cold stimulation, the induction of lncRNA 2310069B03Rik expression was later. These results suggest that lncRNA 2310069B03Rik functions as a suppression factor of Ucp1 expression.


Asunto(s)
Frío , ARN Largo no Codificante/metabolismo , Proteína Desacopladora 1/genética , Adipocitos Beige , Agonistas Adrenérgicos beta/farmacología , Animales , Células Cultivadas , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
18.
J Agric Food Chem ; 67(38): 10595-10603, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31475817

RESUMEN

While ß-cryptoxanthin is hypothesized to have a preventive effect on lifestyle-related diseases, its underlying mechanisms are unknown. We investigated the effect of ß-cryptoxanthin on energy metabolism in adipose tissues and its underlying mechanism. C57BL/6J mice were fed a high-fat diet (60% kcal fat) containing 0 or 0.05% ß-cryptoxanthin for 12 weeks. ß-cryptoxanthin treatment was found to reduce body fat gain and plasma glucose level, while increasing energy expenditure. The expression of uncoupling protein (UCP) 1 was elevated in adipose tissues in the treatment group. Furthermore, the in vivo assays showed that the Ucp1 mRNA expression was higher in the ß-cryptoxanthin treatment group, an effect that disappeared upon cotreatment with a retinoic acid receptor (RAR) antagonist. In conclusion, we report that ß-cryptoxanthin reduces body fat and body weight gain and that ß-cryptoxanthin increases the expression of UCP1 via the RAR pathway.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , beta-Criptoxantina/administración & dosificación , Obesidad/tratamiento farmacológico , Receptores de Ácido Retinoico/metabolismo , Proteína Desacopladora 1/genética , Animales , Metabolismo Energético/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Receptores de Ácido Retinoico/genética , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
19.
Nature ; 572(7771): 614-619, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435015

RESUMEN

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Metabolismo Energético , Homeostasis , Proteínas Mitocondriales/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Termogénesis , Tejido Adiposo Pardo/citología , Animales , Frío , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo
20.
Biosci Biotechnol Biochem ; 83(9): 1782-1789, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31045477

RESUMEN

Activation of the adipose lipolytic pathway during lipid metabolism is mediated by protein kinase A (PKA), which responds to ß-adrenergic stimulation, leading to increased lipolysis. Soy is well known as a functional food and it is able to affect lipolysis in adipocytes. However, the mechanism by which soy components contribute to the lipolytic pathway remains to be fully elucidated. Here, we show that hydrolyzed soy enhances isoproterenol-stimulated lipolysis and activation of PKA in 3T3-L1 adipocytes. We also found that the expression of ß-adrenergic receptors, which coordinate the activation of PKA, is elevated in adipocytes differentiated in the presence of soy hydrolysate. The activity of the soy hydrolysate towards ß-adrenergic receptor expression was detected in its hydrophilic fraction. Our results suggest that the soy hydrolysate enhances the PKA pathway through the upregulation of ß-adrenergic receptor expression and thereby, increase lipolysis in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Glycine max/metabolismo , Isoproterenol/farmacología , Lipólisis/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Células 3T3-L1 , Animales , Cromatografía Líquida de Alta Presión/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hidrólisis , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA