Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Intervalo de año de publicación
1.
Bioengineering (Basel) ; 4(3)2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28952539

RESUMEN

Polyhydroxyalkanoates (PHAs) are a class of biopolymers with numerous applications, but the high cost of production has prevented their use. To reduce this cost, there is a prospect for strains with a high PHA production and the ability to grow in low-cost by-products. In this context, the objective of this work was to evaluate marine bacteria capable of producing PHA. Using Nile red, 30 organisms among 155 were identified as PHA producers in the medium containing starch, and 27, 33, 22 and 10 strains were found to be positive in media supplemented with carboxymethyl cellulose, glycerol, glucose and Tween 80, respectively. Among the organisms studied, two isolates, LAMA 677 and LAMA 685, showed strong potential to produce PHA with the use of glycerol as the carbon source, and were selected for further studies. In the experiment used to characterize the growth kinetics, LAMA 677 presented a higher maximum specific growth rate (µmax = 0.087 h-1) than LAMA 685 (µmax = 0.049 h-1). LAMA 677 also reached a D-3-hydroxybutyrate (P(3HB)) content of 78.63% (dry biomass), which was 3.5 times higher than that of LAMA 685. In the assay of the production of P(3HB) from low-cost substrates (seawater and biodiesel waste glycerol), LAMA 677 reached a polymer content of 31.7%, while LAMA 685 reached 53.6%. Therefore, it is possible to conclude that the selected marine strains have the potential to produce PHA, and seawater and waste glycerol may be alternative substrates for the production of this polymer.

2.
Electron. j. biotechnol ; 15(5): 18-18, Sept. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-657677

RESUMEN

Background: Cellulases and lipases have broad industrial application, which calls for an urgent exploration of microorganisms from extreme environments as valuable source of commercial enzyme. In this context, the present work describes the bioprospection and identification of deep-sea bacteria that produce cellulases and lipases, as well their optimal temperature of activity. Results: The first step of this study was the screening of cellulolytic and lipolytic deep-sea bacteria from sediment and water column, which was conducted with substrates linked with 4-Methylumbelliferyl. Among the 161 strains evaluated, 40 were cellulolytic, 23 were lipolytic and 5 exhibited both activities. Cellulolytic and lipolytic bacteria are more common in sediment than at the water column. Based on the ability to produce cellulases and lipases three isolates were selected and identified (16S rRNA sequencing) as Bacillus stratosphericus, B. aerophilus and B. pumilus. Lipases of strain B. aerophilus LAMA 582 exhibited activity at a wide temperature range (4º to 37ºC) and include psychrophilic behaviour. Strain Bacillus stratosphericus LAMA 585 can growth in a rich (Luria Bertani) and minimal (Marine Minimal) medium, and does not need an inducer to produce its mesophilic cellulases and lipases. Conclusions: Deep-sea sediments have great potential for bioprospection of cellulase and lipase-producing bacteria. The strains LAMA 582 and LAMA 585 with their special features, exhibit a great potential to application at many biotechnology process.


Asunto(s)
Agua de Mar/microbiología , Bacterias/enzimología , Celulasa , Lipasa , Bioprospección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...