Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Otolaryngol ; 143(6): 495-498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37326445

RESUMEN

BACKGROUND: There are multiple treatment methods for odontogenic sinusitis (OS); however, the optimal treatment remains unclear. AIMS/OBJECTIVE: To determine the cure rate of OS after tooth extraction and the factors contributing to the cure. MATERIAL AND METHODS: We prospectively identified 37 patients diagnosed with OS with an indication for causative tooth extraction. Before and three months after tooth extraction, the patients were assessed using sinus computed tomography and classified as either cured or uncured based on the absence or presence of soft tissue shadow in the maxillary sinus. The prognostic factors were analysed by comparing the two groups. RESULTS: There were ten patients for whom all data could be obtained. The mean age of the patients at the time of tooth extraction was 53.8 ± 12.9 years (range, 34-75 years). In seven patients, the soft tissue shadow in the maxillary sinus disappeared; these patients were classified as cured. Uncured patients were significantly younger than cured patients (59.9 vs. 39.7 years). CONCLUSIONS AND SIGNIFICANCE: Tooth extraction effectively treated OS in 70% of patients. However, even after tooth extraction, OS may not improve, particularly in younger patients.


Asunto(s)
Sinusitis Maxilar , Sinusitis , Humanos , Adulto , Persona de Mediana Edad , Anciano , Sinusitis Maxilar/diagnóstico por imagen , Sinusitis Maxilar/etiología , Sinusitis Maxilar/cirugía , Sinusitis/complicaciones , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía , Tomografía Computarizada por Rayos X , Extracción Dental/efectos adversos
2.
Biochem Biophys Res Commun ; 586: 55-62, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826701

RESUMEN

Salivary gland hypofunction due to radiation therapy for head and neck cancer or Sjögren syndrome may cause various oral diseases, which can lead to a decline in the quality of life. Cell therapy using salivary gland stem cells is a promising method for restoring hypofunction. Herein, we show that salivary gland-like cells can be induced from epithelial tissues that were transdifferentiated from mouse embryonic fibroblasts (MEFs). We introduced four genes, Dnp63a, Tfap2a, Grhl2, and Myc (PTMG) that are known to transdifferentiate fibroblasts into oral mucosa-like epithelium in vivo into MEFs. MEFs overexpressing these genes showed epithelial cell characteristics, such as cobblestone appearance and E-cadherin positivity, and formed oral epithelial-like tissue under air-liquid interface culture conditions. The epithelial sheet detached from the culture dish was infected with adenoviruses encoding Sox9 and Foxc1, which we previously identified as essential factors to induce salivary gland formation. The cells detached from the cell sheet formed spheres 10 days after infection and showed a branching morphology. The spheres expressed genes encoding basal/myoepithelial markers, cytokeratin 5, cytokeratin 14, acinar cell marker, aquaporin 5, and the myoepithelial marker α-smooth muscle actin. The dissociated cells of these primary spheres had the ability to form secondary spheres. Taken together, our results provide a new strategy for cell therapy of salivary glands and hold implications in treating patients with dry mouth.


Asunto(s)
Células Acinares/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/genética , Factor de Transcripción SOX9/genética , Glándulas Salivales/metabolismo , Esferoides Celulares/metabolismo , Células Acinares/citología , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Acuaporina 5/genética , Acuaporina 5/metabolismo , Biomarcadores/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Transdiferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Embrión de Mamíferos , Fibroblastos/citología , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción SOX9/metabolismo , Glándulas Salivales/citología , Esferoides Celulares/citología , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Exp Cell Res ; 409(1): 112889, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678306

RESUMEN

Although stem cell aging leads to a decline in tissue homeostasis and regenerative capacity, it remains unclear whether salivary gland stem cell function changes during this process. However, the salivary glands are gradually replaced by connective tissue during aging. Here, we show a decline in the stem cell ability of CD133-positive stem/progenitor cells in the salivary glands of aged mice. The CD133-positive cells were isolated from young, adult, and aged mice. The number of CD133-positive cells was significantly decreased in aged mice. They also showed a lower sphere formation capacity compared to young and adult mice. RNA sequencing revealed that CD133-positive cells in aged mice exhibited lower gene expression of several aging-related genes, including FoxO3a, than those in young and adult mice. Salivary gland cells infected with a recombinant lentivirus encoding the FoxO3a gene showed a reduction in oxidative stress induced by hydrogen peroxide compared with those infected with a control virus. Thus, FoxO3a may inhibit stem cell aging via oxidative stress.


Asunto(s)
Envejecimiento/patología , Senescencia Celular/fisiología , Glándulas Salivales/patología , Células Madre/patología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Regeneración/fisiología , Trasplante de Células Madre/métodos
4.
J Oral Biosci ; 63(1): 8-13, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497841

RESUMEN

BACKGROUND: Organogenesis is regulated by morphogen signaling and transcription networks. These networks differ between organs, and identifying the organ-specific network is important to clarify the molecular mechanisms of development and regeneration of organs. Several studies have been conducted to identify salivary gland-specific networks using a mouse submandibular gland model. The submandibular glands (SMGs) of mice manifest as a thickening of the oral epithelium at embryonic day 11.5 and invaginate into the underlying mesenchyme. The network between Fgf10 and Sox9 is involved in SMG development in mice. HIGHLIGHT: Sox9, a member of the Sox family, is expressed in the SMG in mice from the embryonic stage to the adult stage, although the distribution changes during development. A null mutation of mouse Sox9 is lethal during the neonatal period due to respiratory failure, whereas deletion of Sox9 in the oral epithelium using the Cre/lox P system, can lead to smaller initial buds of SMGs in conditional knockout (cKO) mice than in normal mice. In addition, we showed that adenoviral transduction of Sox9 and Foxc1 genes into mouse embryonic stem cell-derived oral ectoderm could induce salivary gland rudiment in an organoid culture system. ChIP-sequencing revealed that Sox9 possibly regulates several tube- and branching-formation-related genes. CONCLUSION: Sox9 may serve as an essential transcription factor for salivary gland development. The Sox9-mediated pathway can be a promising candidate for regenerating damaged salivary glands.


Asunto(s)
Glándulas Salivales , Glándula Submandibular , Animales , Ectodermo , Ratones , Organogénesis/genética , Transducción de Señal
5.
Exp Cell Res ; 382(1): 111449, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31153924

RESUMEN

Exocrine glands share a common morphology consisting of ductal, acinar, and basal/myoepithelial cells, but their functions and mechanisms of homeostasis differ among tissues. Salivary glands are an example of exocrine glands, and they have been reported to contain multipotent stem cells that differentiate into other tissues. In this study, we purified the salivary gland stem/progenitor cells of adult mouse salivary glands using the cell surface marker CD133 by flow cytometry. CD133+ cells possessed stem cell capacity, and the transplantation of CD133+ cells into the submandibular gland reconstituted gland structures, including functional acinar. CD133+ cells were sparsely distributed in the intercalated and exocrine ducts and expressed Sox9 at higher levels than CD133- cells. Moreover, we demonstrated that Sox9 was required for the stem cell properties CD133+ cells, including colony and sphere formation. Thus, the Sox9-related signaling may control the regeneration salivary glands.


Asunto(s)
Factor de Transcripción SOX9/fisiología , Células Madre/citología , Glándula Submandibular/citología , Antígeno AC133/análisis , Adulto , Anciano , Animales , Autorrenovación de las Células , Ensayo de Unidades Formadoras de Colonias , Femenino , Genes Reporteros , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Conductos Salivales/citología , Conductos Salivales/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Glándula Submandibular/metabolismo
6.
J Reprod Dev ; 51(5): 617-26, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16034193

RESUMEN

The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.


Asunto(s)
Ciclina B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Oocitos/fisiología , Partenogénesis/fisiología , Porcinos/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , Femenino , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/farmacología , Factor Promotor de Maduración/metabolismo , Meiosis/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutagénesis Sitio-Dirigida , Oocitos/enzimología , Oocitos/crecimiento & desarrollo , Inhibidores de Proteínas Quinasas/farmacología , Porcinos/metabolismo
7.
Biol Reprod ; 70(1): 154-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12954723

RESUMEN

The function of cyclin B1 (CB1) and cyclin B2 (CB2) during porcine oocyte maturation was investigated by injecting oocytes with their antisense RNAs (asRNAs). At first, protein levels of both cyclin Bs were examined by immunoblotting, revealing that immature oocytes had only CB2, at a level comparable to 1/20 to 1/40 of that detected in first metaphase oocytes. Both cyclin B syntheses were started around germinal vesicle breakdown (GVBD); CB1 and CB2 peaked at the second metaphase and first metaphase, respectively. We obtained a porcine CB2 cDNA fragment, which was 88% homologous with human CB2, by reverse-transcriptase polymerase chain reaction (RT-PCR) using total RNAs of immature porcine oocytes and a primer set of human CB2. Specific asRNAs of CB1 and CB2 were prepared in vitro. Then one, the other, or both were injected into the cytoplasm of immature oocytes. CB1 asRNA inhibited CB1 synthesis specifically; the injected oocytes underwent first meiosis normally but could not arrest at the second meiotic metaphase. CB2 asRNA inhibited CB2 synthesis specifically, but had almost no effect on the maturation of injected oocytes. When both CB1 and CB2 asRNAs were injected, synthesis of both cyclin Bs was inhibited, and GVBD was significantly suppressed but occurred slowly. These results suggest that CB1 is the principal molecule for regulation in mammalian oocyte maturation, whereas CB2 has only an accessory role. They also show that in porcine oocytes, cyclin B synthesis is not necessary for GVBD induction itself, but synthesis of at least one cyclin B, CB1 or CB2, is necessary for GVBD induction in a normal time course.


Asunto(s)
Ciclina B/metabolismo , Oocitos/citología , Oocitos/fisiología , Animales , Secuencia de Bases , Ciclina B/genética , Ciclina B1 , Ciclina B2 , Femenino , Meiosis/fisiología , Datos de Secuencia Molecular , ARN sin Sentido/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA