Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Bone Miner Metab ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373772

RESUMEN

INTRODUCTION: Disulfiram (DSF), known as an anti-alcoholism drug, has been reported to suppress osteoclast differentiation in vitro; however, it remains uncertain whether DSF is effective in preventing osteoclastogenesis in vivo. This study aimed to investigate the effect of DSF administration in osteoporotic mice and its contribution to osteoclastogenesis in vivo. MATERIALS AND METHODS: The bone phenotype of ovariectomized mice, both treated and untreated with DSF, was examined using microcomputed tomography analysis. Osteoclastic and osteoblastic parameters were assessed through bone morphometric analysis. The direct effect of DSF on osteoblastogenesis in vitro was evaluated via a primary osteoblast culture experiment. The expression of genes related to DSF targets (Nup85, Ccr2, and Ccr5) in osteoclast-lineage cells was examined using scRNA-seq analysis and flow cytometry analysis using the bone marrow cells from ovariectomized mice. The impact of DSF on osteoclast-lineage cells was assessed using primary cultures of osteoclasts. RESULTS: DSF administration ameliorated ovariectomy-induced bone loss and mitigated the increase of osteoclasts without affecting osteoblastogenesis. The scRNA-seq data revealed that osteoclast precursor cells expressed Nup85, Ccr2, and Ccr5. CCR2 and CCR5-positive cells in osteoclast precursor cells within bone marrow increased following ovariectomy, and this increase was canceled by DSF administration. Finally, we found that DSF had a significant inhibitory effect on osteoclastogenesis in the early stage by suppressing Tnfrsf11a expression. CONCLUSION: This study demonstrates that DSF could be a candidate for osteoporosis therapies because it suppresses osteoclastogenesis from an early stage in vivo.

2.
J Clin Invest ; 134(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403924

RESUMEN

Immunological self-tolerance is established in the thymus by the expression of virtually all self-antigens, including tissue-restricted antigens (TRAs) and cell-type-restricted antigens (CRAs). Despite a wealth of knowledge about the transcriptional regulation of TRA genes, posttranscriptional regulation remains poorly understood. Here, we show that protein arginine methylation plays an essential role in central immune tolerance by maximizing the self-antigen repertoire in medullary thymic epithelial cells (mTECs). Protein arginine methyltransferase-5 (Prmt5) was required for pre-mRNA splicing of certain key genes in tolerance induction, including Aire as well as various genes encoding TRAs. Mice lacking Prmt5 specifically in thymic epithelial cells exhibited an altered thymic T cell selection, leading to the breakdown of immune tolerance accompanied by both autoimmune responses and enhanced antitumor immunity. Thus, arginine methylation and transcript splicing are essential for establishing immune tolerance and may serve as a therapeutic target in autoimmune diseases as well as cancer immunotherapy.


Asunto(s)
Autoantígenos , Autoinmunidad , Proteína-Arginina N-Metiltransferasas , Empalme del ARN , Timo , Animales , Ratones , Timo/inmunología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/inmunología , Autoantígenos/inmunología , Autoantígenos/genética , Autoinmunidad/inmunología , Empalme del ARN/inmunología , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteína AIRE , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Autotolerancia/inmunología , Autotolerancia/genética , Arginina/genética , Arginina/inmunología , Arginina/metabolismo , Tolerancia Inmunológica/genética , Metilación
3.
Regen Ther ; 26: 819-825, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39329098

RESUMEN

Among the regenerative therapies being put into clinical use, the field of corneal regenerative therapy is one of the most advanced, with several regulatory approved products. This article describes the progress from initial development through to clinical application in the eye field, with a particular focus on therapies for corneal epithelial and endothelial diseases that have already been regulatory approved as regenerative therapy products. The applications of regenerative therapy to the corneal epithelium were attempted and confirmed earlier than other parts of the cornea, following advancements in basic research on corneal epithelial stem cells. Based on these advances, four regenerative therapy products for corneal epithelial disease, each employing distinct cell sources and culture techniques, have been commercialized since the regulatory approval of Holoclar® in Italy as a regenerative therapy product for corneal epithelial disease in 2015. Corneal endothelial regenerative therapy was started by the development of an in vitro method to expand corneal endothelial cells which do not proliferate in adults. The product was approved in Japan as Vyznova® in 2023. The development of regenerative therapies for retinal and ocular surface diseases is actively being pursued, and these therapies use somatic stem cells and pluripotent stem cells (PSCs), especially induced pluripotent stem cells (iPSCs). Accordingly, the eye field is anticipated to play a pioneering role in regenerative therapy development going forward.

4.
Int J Oral Sci ; 16(1): 54, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143049

RESUMEN

Clinical studies have shown that Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is associated with aggressive periodontitis and can potentially trigger or exacerbate rheumatoid arthritis (RA). However, the mechanism is poorly understood. Here, we show that systemic infection with A. actinomycetemcomitans triggers the progression of arthritis in mice anti-collagen antibody-induced arthritis (CAIA) model following IL-1ß secretion and cell infiltration in paws in a manner that is dependent on caspase-11-mediated inflammasome activation in macrophages. The administration of polymyxin B (PMB), chloroquine, and anti-CD11b antibody suppressed inflammasome activation in macrophages and arthritis in mice, suggesting that the recognition of lipopolysaccharide (LPS) in the cytosol after bacterial degradation by lysosomes and invasion via CD11b are needed to trigger arthritis following inflammasome activation in macrophages. These data reveal that the inhibition of caspase-11-mediated inflammasome activation potentiates aggravation of RA induced by infection with A. actinomycetemcomitans. This work highlights how RA can be progressed by inflammasome activation as a result of periodontitis-associated bacterial infection and discusses the mechanism of inflammasome activation in response to infection with A. actinomycetemcomitans.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Artritis Experimental , Caspasas Iniciadoras , Inflamasomas , Macrófagos , Animales , Ratones , Macrófagos/inmunología , Artritis Experimental/microbiología , Artritis Experimental/inmunología , Interleucina-1beta/metabolismo , Artritis Reumatoide , Ratones Endogámicos C57BL , Lipopolisacáridos , Infecciones por Pasteurellaceae/microbiología
5.
Nature ; 634(8033): 474-481, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39169177

RESUMEN

The periosteum is the layer of cells that covers nearly the entire surface of every bone. Upon infection, injury or malignancy the bone surface undergoes new growth-the periosteal reaction-but the mechanism and physiological role of this process remain unknown1,2. Here we show that the periosteal reaction protects against cancer invasion into the bone. Histological analyses of human lesions of head and neck squamous cell carcinomas (HNSCCs) show that periosteal thickening occurs in proximity to the tumour. We developed a genetically dissectible mouse model of HNSCC and demonstrate that inducible depletion of periosteal cells accelerates cancerous invasion of the bone. Single-cell RNA sequencing reveals that expression of the gene encoding the protease inhibitor TIMP1 is markedly increased in the periosteum at the pre-invasive stage. This increase is due to upregulation of HIF1α expression in the tumour microenvironment, and increased TIMP1 inactivates matrix-degrading proteases, promoting periosteal thickening to inhibit cancer invasion. Genetic deletion of Timp1 impairs periosteal expansion, exacerbating bone invasion and decreasing survival in tumour-bearing mice. Together, these data show that the periosteal reaction may act as a functional stromal barrier against tumour progression, representing a unique example of tissue immunity mediated by stromal cells.


Asunto(s)
Neoplasias Óseas , Neoplasias de Cabeza y Cuello , Invasividad Neoplásica , Periostio , Inhibidor Tisular de Metaloproteinasa-1 , Microambiente Tumoral , Animales , Femenino , Humanos , Masculino , Ratones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Invasividad Neoplásica/genética , Periostio/citología , Periostio/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Inhibidor Tisular de Metaloproteinasa-1/deficiencia , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Análisis de Expresión Génica de una Sola Célula
6.
Inflamm Regen ; 44(1): 36, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080781

RESUMEN

BACKGROUND: Recent single-cell RNA sequencing (scRNA-seq) analysis revealed the functional heterogeneity and pathogenic cell subsets in immune cells, synovial fibroblasts and bone cells in rheumatoid arthritis (RA). JAK inhibitors which ameliorate joint inflammation and bone destruction in RA, suppress the activation of various types of cells in vitro. However, the key cellular and molecular mechanisms underlying the potent clinical effects of JAK inhibitors on RA remain to be determined. Our aim is to identify a therapeutic target for JAK inhibitors in vivo. METHODS: We performed scRNA-seq analysis of the synovium of collagen-induced arthritis (CIA) mice treated with or without a JAK inhibitor, followed by a computational analysis to identify the drug target cells and signaling pathways. We utilized integrated human RA scRNA-seq datasets and genetically modified mice administered with the JAK inhibitor for the confirmation of our findings. RESULTS: scRNA-seq analysis revealed that oncostatin M (OSM) driven macrophage-fibroblast interaction is highly activated under arthritic conditions. OSM derived from macrophages, acts on OSM receptor (OSMR)-expressing synovial fibroblasts, activating both inflammatory and tissue-destructive subsets. Inflammatory synovial fibroblasts stimulate macrophages, mainly through IL-6, to exacerbate inflammation. Tissue-destructive synovial fibroblasts promote osteoclast differentiation by producing RANKL to accelerate bone destruction. scRNA-seq analysis also revealed that OSM-signaling in synovial fibroblasts is the main signaling pathway targeted by JAK inhibitors in vivo. Mice specifically lacking OSMR in synovial fibroblasts (Osmr∆Fibro) displayed ameliorated inflammation and joint destruction in arthritis. The JAK inhibitor was effective on the arthritis of the control mice while it had no effect on the arthritis of Osmr∆Fibro mice. CONCLUSIONS: OSM functions as one of the key cytokines mediating pathogenic macrophage-fibroblast interaction. OSM-signaling in synovial fibroblasts is one of the main signaling pathways targeted by JAK inhibitors in vivo. The critical role of fibroblast-OSM signaling in autoimmune arthritis was shown by a combination of mice specifically deficient for OSMR in synovial fibroblasts and administration of the JAK inhibitor. Thus, the OSM-driven synovial macrophage-fibroblast circuit is proven to be a key driver of autoimmune arthritis, serving as a crucial drug target in vivo.

7.
Int Immunol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916145

RESUMEN

The thymus is an organ required for T cell development and is also an eosinophil-rich organ; however, the nature and function of thymic eosinophils remain unclear. Here, we characterized the gene expression and differentiation mechanism of thymic eosinophils in mice. Thymic eosinophils showed a distinct gene expression profile compared with other organ-resident eosinophils. The number of thymic eosinophils was controlled by medullary thymic epithelial cells. In Rag-deficient mice, the unique gene expression signature of thymic eosinophils was lost but restored by pre-T cell receptor signaling, which induces CD4+ CD8+ thymocyte differentiation, indicating that T cell differentiation beyond the CD4- CD8- stage is necessary and sufficient for the induction of thymic eosinophils. These results demonstrate that thymic eosinophils are quantitatively and qualitatively regulated by medullary thymic epithelial cells and developing thymocytes, respectively, suggesting that thymic eosinophils are a distinct, thymus-specific cell subset, induced by interactions with thymic cells.

8.
Int J Oral Sci ; 16(1): 18, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413562

RESUMEN

The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune-bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNA-sequencing analysis on mouse periodontal lesions and showed that neutrophil-osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Ratones , Animales , Neutrófilos/metabolismo , Neutrófilos/patología , Citocinas , Pérdida de Hueso Alveolar/microbiología , Osteogénesis , Ligando RANK
9.
Inflamm Regen ; 43(1): 44, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726797

RESUMEN

BACKGROUND: The types of bone damage in rheumatoid arthritis (RA) include joint erosion, periarticular osteoporosis, and systemic osteoporosis. Janus kinase (JAK) inhibitors ameliorate inflammation and joint erosion in RA, but their effect on the three types of bone loss have not been reportedly explored in depth. We aimed to clarify how JAK inhibitors influence the various types of bone loss in arthritis by modulating osteoclastic bone resorption and/or osteoblastic bone formation. METHODS: Collagen-induced arthritis (CIA) mice were treated with a JAK inhibitor after the onset of arthritis. Micro-computed tomography (µCT) and histological analyses (bone morphometric analyses) on the erosive calcaneocuboid joint, periarticular bone (distal femur or proximal tibia), and vertebrae were performed. The effect of four different JAK inhibitors on osteoclastogenesis under various conditions was examined in vitro. RESULTS: The JAK inhibitor ameliorated joint erosion, periarticular osteopenia and systemic bone loss. It reduced the osteoclast number in all the three types of bone damage. The JAK inhibitor enhanced osteoblastic bone formation in the calcaneus distal to inflammatory synovium in the calcaneocuboid joints, periarticular region of the tibia and vertebrae, but not the inflamed calcaneocuboid joint. All the JAK inhibitors suppressed osteoclastogenesis in vitro to a similar extent in the presence of osteoblastic cells. Most of the JAK inhibitors abrogated the suppressive effect of Th1 cells on osteoclastogenesis by inhibiting IFN-γ signaling in osteoclast precursor cells, while a JAK inhibitor did not affect this effect due to less ability to inhibit IFN-γ signaling. CONCLUSIONS: The JAK inhibitor suppressed joint erosion mainly by inhibiting osteoclastogenesis, while it ameliorated periarticular osteopenia and systemic bone loss by both inhibiting osteoclastogenesis and promoting osteoblastogenesis. These results indicate that the effect of JAK inhibitors on osteoclastogenesis and osteoblastogenesis depends on the bone damage type and the affected bone area. In vitro studies suggest that while JAK inhibitors inhibit osteoclastic bone resorption, their effects on osteoclastogenesis in inflammatory environments vary depending on the cytokine milieu, JAK selectivity and cytokine signaling specificity. The findings reported here should contribute to the strategic use of antirheumatic drugs against structural damages in RA.

10.
Bone Res ; 11(1): 43, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563119

RESUMEN

The bony skeleton is continuously renewed throughout adult life by the bone remodeling process, in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms. Osteocytes regulate bone remodeling by producing the osteoclast differentiation factor RANKL (encoded by the TNFSF11 gene). However, the precise mechanisms underlying RANKL expression in osteocytes are still elusive. Here, we explored the epigenomic landscape of osteocytic cells and identified a hitherto-undescribed osteocytic cell-specific intronic enhancer in the TNFSF11 gene locus. Bioinformatics analyses showed that transcription factors involved in cell death and senescence act on this intronic enhancer region. Single-cell transcriptomic data analysis demonstrated that cell death signaling increased RANKL expression in osteocytic cells. Genetic deletion of the intronic enhancer led to a high-bone-mass phenotype with decreased levels of RANKL in osteocytic cells and osteoclastogenesis in the adult stage, while RANKL expression was not affected in osteoblasts or lymphocytes. These data suggest that osteocytes may utilize a specialized regulatory element to facilitate osteoclast formation at the bone surface to be resorbed by linking signals from cellular senescence/death and RANKL expression.

11.
Ann Rheum Dis ; 82(9): 1153-1161, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400117

RESUMEN

OBJECTIVES: Recent studies demonstrate that extracellular-released aminoacyl-tRNA synthetases (aaRSs) play unique roles in immune responses and diseases. This study aimed to understand the role of extracellular aaRSs in the pathogenesis of rheumatoid arthritis (RA). METHODS: Primary macrophages and fibroblast-like synoviocytes were cultured with aaRSs. aaRS-induced cytokine production including IL-6 and TNF-α was detected by ELISA. Transcriptomic features of aaRS-stimulated macrophages were examined using RNA-sequencing. Serum and synovial fluid (SF) aaRS levels in patients with RA were assessed using ELISA. Peptidyl arginine deiminase (PAD) 4 release from macrophages stimulated with aaRSs was detected by ELISA. Citrullination of aaRSs by themselves was examined by immunoprecipitation and western blotting. Furthermore, aaRS inhibitory peptides were used for inhibition of arthritis in two mouse RA models, collagen-induced arthritis and collagen antibody-induced arthritis. RESULTS: All 20 aaRSs functioned as alarmin; they induced pro-inflammatory cytokines through the CD14-MD2-TLR4 axis. Stimulation of macrophages with aaRSs displayed persistent innate inflammatory responses. Serum and SF levels of many aaRSs increased in patients with RA compared with control subjects. Furthermore, aaRSs released PAD4 from living macrophages, leading to their citrullination. We demonstrate that aaRS inhibitory peptides suppress cytokine production and PAD4 release by aaRSs and alleviate arthritic symptoms in a mouse RA model. CONCLUSIONS: Our findings uncovered the significant role of aaRSs as a novel alarmin in RA pathogenesis, indicating that their blocking agents are potent antirheumatic drugs.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Ratones , Alarminas , Células Cultivadas , Citocinas , Modelos Animales de Enfermedad , Fibroblastos/patología , Inflamación , Líquido Sinovial , Humanos
12.
iScience ; 26(7): 107016, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37389178

RESUMEN

The conjunctival epithelium consists of conjunctival epithelial cells and goblet cells derived from conjunctival epithelial stem/progenitor cells. However, the source of these cells is not well known because no specific markers for conjunctival epithelial stem/progenitor cells have been discovered. Therefore, to identify conjunctival epithelial stem/progenitor cell markers, we performed single-cell RNA sequencing of a conjunctival epithelial cell population derived from human-induced pluripotent stem cells (hiPSCs). The following conjunctival epithelial markers were identified: BST2, SLC2A3, AGR2, TMEM54, OLR1, and TRIM29. Notably, BST2 was strongly positive in the basal conjunctival epithelium, which is thought to be rich in stem/progenitor cells. Moreover, BST2 was able to sort conjunctival epithelial stem/progenitor cells from hiPSC-derived ocular surface epithelial cell populations. BST2-positive cells were highly proliferative and capable of successfully generating conjunctival epithelial sheets containing goblet cells. In conclusion, BST2 has been identified as a specific marker of conjunctival epithelial stem/progenitor cells.

13.
Nat Commun ; 14(1): 906, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810735

RESUMEN

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Osteoclastos/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Huesos/metabolismo , Membrana Celular/metabolismo , Resorción Ósea/metabolismo
14.
Bone ; 168: 116675, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638904

RESUMEN

Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.


Asunto(s)
Artritis Reumatoide , Resorción Ósea , Humanos , Huesos/metabolismo , Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Linfocitos T/metabolismo
15.
Inflamm Regen ; 42(1): 27, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050796

RESUMEN

Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprecedented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.

16.
Bone Res ; 10(1): 52, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35918335

RESUMEN

Impaired locomotion has been extensively studied worldwide because those afflicted with it have a potential risk of becoming bedridden. Physical exercise at times can be an effective remedy for frailty, but exercise therapy cannot be applied in all clinical cases. Medication is safer than exercise, but there are no drugs that reinforce both muscle and bone when administered alone. Multiple medications increase the risk of adverse events; thus, there is a need for individual drugs targeting both tissues. To this end, we established a novel sequential drug screening system and identified an aminoindazole derivative, locamidazole (LAMZ), which promotes both myogenesis and osteoblastogenesis while suppressing osteoclastogenesis. Administration of this drug enhanced locomotor function, with muscle and bone significantly strengthened. Mechanistically, LAMZ induced Mef2c and PGC-1α in a calcium signaling-dependent manner. As this signaling is activated upon physical exercise, LAMZ mimics physical exercise. Thus, LAMZ is a promising therapeutic drug for locomotor diseases, including sarcopenia and osteoporosis.

17.
Nat Immunol ; 23(9): 1330-1341, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35999392

RESUMEN

Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.


Asunto(s)
Artritis Reumatoide , Fibroblastos , Proteína Proto-Oncogénica c-ets-1 , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Ligando RANK/genética , Factores de Transcripción/metabolismo
18.
Sci Rep ; 12(1): 12207, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842459

RESUMEN

Developmental dysplasia of the hip (DDH) is characterized by anatomical abnormalities of the hip joint, ranging from mild acetabular dysplasia to hip subluxation and eventually dislocation. The mechanism underlying the cartilage degeneration of the hip joints exposed to reduced dynamic loads due to hip dislocation remains unknown. We established a rodent hip dislocation (disarticulation; DA) model of DDH (DA-DDH rats and mice) by swaddling. Expression levels of periostin (Postn) and catabolic factors, such as interleukin-6 (IL-6) and matrix metalloproteinase 3 (Mmp3), increased and those of chondrogenic markers decreased in the acetabular cartilage of the DA-DDH models. Postn induced IL-6 and Mmp3 expression in chondrocytes through integrin αVß3, focal adhesion kinase, Src, and nuclear factor-κB (NF-κB) signaling. The microgravity environment created by a random positioning machine induced Postn expression in chondrocytes through signal transducer and activator of transcription 3 (STAT3) signaling. IL-6 stimulated Postn expression via STAT3 signaling. Furthermore, cartilage degeneration was suppressed in the acetabulum of Postn-/- DA-DDH mice compared with that in the acetabulum of wild type DA-DDH mice. In summary, reduced dynamic loads due to hip dislocation induced acetabular cartilage degeneration via IL-6 and MMP3 through STAT3/periostin/NF-κB signaling in the rodent DA-DDH models.


Asunto(s)
Enfermedades de los Cartílagos , Luxación de la Cadera , Acetábulo , Animales , Cartílago , Interleucina-6 , Metaloproteinasa 3 de la Matriz/genética , Ratones , FN-kappa B , Ratas , Factor de Transcripción STAT3
19.
Nat Commun ; 13(1): 4166, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851381

RESUMEN

The ontogeny and fate of stem cells have been extensively investigated by lineage-tracing approaches. At distinct anatomical sites, bone tissue harbors multiple types of skeletal stem cells, which may independently supply osteogenic cells in a site-specific manner. Periosteal stem cells (PSCs) and growth plate resting zone stem cells (RZSCs) critically contribute to intramembranous and endochondral bone formation, respectively. However, it remains unclear whether there is functional crosstalk between these two types of skeletal stem cells. Here we show PSCs are not only required for intramembranous bone formation, but also for the growth plate maintenance and prolonged longitudinal bone growth. Mice deficient in PSCs display progressive defects in intramembranous and endochondral bone formation, the latter of which is caused by a deficiency in PSC-derived Indian hedgehog (Ihh). PSC-specific deletion of Ihh impairs the maintenance of the RZSCs, leading to a severe defect in endochondral bone formation in postnatal life. Thus, crosstalk between periosteal and growth plate stem cells is essential for post-developmental skeletal growth.


Asunto(s)
Condrocitos , Placa de Crecimiento , Animales , Proteínas Hedgehog/genética , Ratones , Osteogénesis/genética , Células Madre
20.
Stem Cell Reports ; 17(7): 1714-1729, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750044

RESUMEN

When corneal epithelial stem cells residing in the corneal limbus become dysfunctional, called a limbal stem cell deficiency (LSCD), corneal transparency is decreased, causing severe vision loss. Transplantation of corneal epithelial cell sheets (CEPS) derived from stem cells, including induced pluripotent stem cells, is a promising treatment for LSCD. However, the potential effect of human leukocyte antigen (HLA) concordance on CEPS transplantation has not been addressed. Here, we show that there is no difference in the immune response to CEPS between HLA-matched and -unmatched peripheral blood mononuclear cells in mixed lymphocyte reactions. CEPS transplantation in cynomolgus monkeys revealed that the immune response to major histocompatibility-unmatched CEPS was not strong and could be controlled by local steroid administration. Furthermore, programmed death ligand 1 was identified as an immunosuppressive molecule in CEPS under inflammatory conditions in vitro. Our results indicate that corneal epithelium has low immunogenicity and allogeneic CEPS transplantation requires mild immunosuppression.


Asunto(s)
Enfermedades de la Córnea , Epitelio Corneal , Limbo de la Córnea , Animales , Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/terapia , Células Epiteliales/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Primates , Trasplante de Células Madre/métodos , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...