Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Evodevo ; 15(1): 2, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326924

RESUMEN

BACKGROUND: The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS: We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS: The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.

2.
J Tissue Eng ; 14: 20417314231187960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529250

RESUMEN

Fibroblast growth factor (FGF) signaling plays essential roles in various biological events. FGF18 is one of the ligands to be associated with osteogenesis, chondrogenesis and bone healing. The mouse critical-sized calvarial defect healing induced by the bone morphogenetic protein 2 (BMP2)-hydrogel is stabilized when FGF18 is added. Here, we aimed to investigate the role of FGF18 in the calvarial bone healing model. We first found that FGF18 + BMP2 hydrogel application to the calvarial bone defect increased the expression of anti-inflammatory markers, including those related to tissue healing M2 macrophage (M2-Mø) prior to mineralized bone formation. The depletion of macrophages with clodronate liposome hindered the FGF18 effect. We then examined how FGF18 induces M2-Mø polarization by using mouse primary bone marrow (BM) cells composed of macrophage precursors and BM stromal cells (BMSCs). In vitro studies demonstrated that FGF18 indirectly induces M2-Mø polarization by affecting BMSCs. Whole transcriptome analysis and neutralizing antibody treatment of BMSC cultured with FGF18 revealed that chemoattractant chemokine (c-c motif) ligand 2 (CCL2) is the major mediator for M2-Mø polarization. Finally, FGF18-augmented activity toward favorable bone healing with BMP2 was diminished in the calvarial defect in Ccr2-deleted mice. Altogether, we suggest a novel role of FGF18 in M2-Mø modulation via stimulation of CCL2 production in calvarial bone healing.

3.
J Oral Biosci ; 65(3): 233-242, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277025

RESUMEN

OBJECTIVES: This study aimed to compare the extracellular matrix of primary cartilage with the secondary cartilage of chicks using immunohistochemical analyses in order to understand the features of chick secondary chondrogenesis. METHODS: Immunohistochemical analysis was performed on the extracellular matrix of quadrate (primary), squamosal, surangular, and anterior pterygoid secondary cartilages using various antibodies targeting the extracellular matrix of cartilage and bone. RESULTS: The localization of collagen types I, II, and X, versican, aggrecan, hyaluronan, link protein, and tenascin-C was identified in the quadrate cartilage, with variations within and between the regions. Newly formed squamosal and surangular secondary cartilages showed simultaneous immunoreactivity for all molecules investigated. However, collagen type X immunoreactivity was not observed, and there was weak immunoreactivity for versican and aggrecan in the anterior pterygoid secondary cartilage. CONCLUSIONS: The immunohistochemical localization of extracellular matrix in the quadrate (primary) cartilage was comparable to that of long bone (primary) cartilage in mammals. The fibrocartilaginous nature and rapid differentiation into hypertrophic chondrocytes, which are known structural features of secondary cartilage, were confirmed in the extracellular matrix of squamosal and surangular secondary cartilages. Furthermore, these tissues appear to undergo developmental processes similar to those in mammals. However, the anterior pterygoid secondary cartilage exhibited unique features that differed from primary and other secondary cartilages, suggesting it is formed through a distinct developmental process.


Asunto(s)
Cartílago , Versicanos , Animales , Agrecanos/análisis , Agrecanos/metabolismo , Versicanos/análisis , Versicanos/metabolismo , Cartílago/química , Cartílago/metabolismo , Cráneo/metabolismo , Mamíferos
4.
J Vet Med Sci ; 85(5): 571-577, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019634

RESUMEN

Bats can be phylogenetically classified into three major groups: pteropodids, rhinolophoids, and yangochiropterans. While rhinolophoids and yangochiropterans are capable of laryngeal echolocation, pteropodids lack this ability. Delicate ear movements are essential for echolocation behavior in bats with laryngeal echolocation. Caudal auricular muscles, especially the cervicoauricularis group, play a critical role in such ear movements. Previously, caudal auricular muscles were studied in three species of bats with laryngeal echolocation, but to our knowledge, there have been no studies on non-laryngeal echolocators, the pteropodids. Here, we describe the gross anatomy of the cervicoauricularis muscles and their innervation in Cynopterus sphinx by using diffusible iodine-based contrast-enhanced computed tomography and 3D reconstructions of immunohistochemically stained serial sections. A previous study on bats with laryngeal echolocation reported that rhinolophoids have four cervicoauricularis muscles and yangochiropterans have three. We observed three cervicoauricularis muscles in the pteropodid C. sphinx. The number of cervicoauricularis muscles and their innervation pattern were comparable to those of non-bat boreoeutherian mammals and yangochiropterans, suggesting that pteropodids, and yangochiropterans maintain the general condition of boreoeutherian mammals and that rhinolophoids have a derived condition. The unique nomenclature had been previously applied to the cervicoauricularis muscles of bats with laryngeal echolocation, but given the commonality between non-bat laurasiatherians and bats, with the exception of rhinolophoids, maintaining the conventional nomenclature (i.e., M. cervicoauricularis superficialis, M. cervicoauricularis medius, and M. cervicoauricularis profundus) is proposed for bats.


Asunto(s)
Quirópteros , Ecolocación , Animales , Ecolocación/fisiología , Músculos
5.
Proc Biol Sci ; 290(1990): 20221928, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629110

RESUMEN

Bats have undergone one of the most drastic limb innovations in vertebrate history, associated with the evolution of powered flight. Knowledge of the genetic basis of limb organogenesis in bats has increased but little has been documented regarding the differences between limb organogenesis in bats and that of other vertebrates. We conducted embryological comparisons of the timelines of limb organogenesis in 24 bat species and 72 non-bat amniotes. In bats, the time invested for forelimb organogenesis has been considerably extended and the appearance timing of the forelimb ridge has been significantly accelerated, whereas the timing of the finger and first appearance of the claw development has been delayed, facilitating the enlargement of the manus. Furthermore, we discovered that bats initiate the development of their hindlimbs earlier than their forelimbs compared with other placentals. Bat neonates are known to be able to cling continuously with their well-developed foot to the maternal bodies or habitat substrates soon after birth. We suggest that this unique life history of neonates, which possibly coevolved with powered flight, has driven the accelerated development of the hindlimb and precocious foot.


Asunto(s)
Quirópteros , Animales , Recién Nacido , Humanos , Vertebrados , Miembro Anterior , Organogénesis/genética , Miembro Posterior , Euterios , Vuelo Animal
6.
J Anat ; 242(3): 387-401, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36394990

RESUMEN

Syndromic craniosynostosis (CS) patients exhibit early, bony fusion of calvarial sutures and cranial synchondroses, resulting in craniofacial dysmorphology. In this study, we chronologically evaluated skull morphology change after abnormal fusion of the sutures and synchondroses in mouse models of syndromic CS for further understanding of the disease. We found fusion of the inter-sphenoid synchondrosis (ISS) in Apert syndrome model mice (Fgfr2S252W/+ ) around 3 weeks old as seen in Crouzon syndrome model mice (Fgfr2cC342Y/+ ). We then examined ontogenic trajectories of CS mouse models after 3 weeks of age using geometric morphometrics analyses. Antero-ventral growth of the face was affected in Fgfr2S252W/+ and Fgfr2cC342Y/+ mice, while Saethre-Chotzen syndrome model mice (Twist1+/- ) did not show the ISS fusion and exhibited a similar growth pattern to that of control littermates. Further analysis revealed that the coronal suture synostosis in the CS mouse models induces only the brachycephalic phenotype as a shared morphological feature. Although previous studies suggest that the fusion of the facial sutures during neonatal period is associated with midface hypoplasia, the present study suggests that the progressive postnatal fusion of the cranial synchondrosis also contributes to craniofacial dysmorphology in mouse models of syndromic CS. These morphological trajectories increase our understanding of the progression of syndromic CS skull growth.


Asunto(s)
Acrocefalosindactilia , Disostosis Craneofacial , Craneosinostosis , Ratones , Animales , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Cráneo , Disostosis Craneofacial/genética , Acrocefalosindactilia/genética , Suturas Craneales
7.
Sci Rep ; 12(1): 21196, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476755

RESUMEN

The inner ear controls hearing and balance, while the temporal molecular signatures and transcriptional regulatory dynamics underlying its development are still unclear. In this study, we investigated time-series transcriptome in the mouse inner ear from embryonic day 11.5 (E11.5) to postnatal day 7 (P7) using bulk RNA-Seq. A total of 10,822 differentially expressed genes were identified between pairwise stages. We identified nine significant temporal expression profiles using time-series expression analysis. The constantly down-regulated profiles throughout the development are related to DNA activity and neurosensory development, while the constantly upregulated profiles are related to collagen and extracellular matrix. Further co-expression network analysis revealed that several hub genes, such as Pnoc, Cd9, and Krt27, are related to the neurosensory development, cell adhesion, and keratinization. We uncovered three important transcription regulatory paths during mice inner ear development. Transcription factors related to Hippo/TGFß signaling induced decreased expressions of genes related to the neurosensory and inner ear development, while a series of INF genes activated the expressions of genes in immunoregulation. In addition to deepening our understanding of the temporal and regulatory mechanisms of inner ear development, our transcriptomic data could fuel future multi-species comparative studies and elucidate the evolutionary trajectory of auditory development.


Asunto(s)
Oído Interno , Neoplasias Cutáneas , Ratones , Animales , Proyectos de Investigación
9.
Biochem Biophys Res Commun ; 598: 74-80, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35151207

RESUMEN

The histone methyltransferase SET domain bifurcated 1 (SETDB1) catalyzes the trimethylation of lysine 9 of histone H3, thereby regulating gene expression. In this study, we used conditional knockout mice, where Setdb1 was deleted only in neural crest cells (Setdb1fl/fl,Wnt1-Cre + mice), to clarify the role of SETDB1 in palatal development. Setdb1fl/fl,Wnt1-Cre + mice died shortly after birth due to a cleft palate with full penetration. Reduced palatal mesenchyme proliferation was seen in Setdb1fl/fl,Wnt1-Cre + mice, which might be a possible mechanism of cleft palate development. Quantitative RT-PCR and in situ hybridization showed that expression of the Pax9, Bmp4, Bmpr1a, Wnt5a, and Fgf10 genes, known to be important for palatal development, were markedly decreased in the palatal mesenchyme of Setdb1fl/fl,Wnt1-Cre + mice. Along with these phenomena, SMAD1/5/9 phosphorylation was decreased by the loss of Setdb1. Our results demonstrated that SETDB1 is indispensable for palatal development partially through its proliferative effect. Taken together with previous reports that PAX9 regulates BMP signaling during palatal development which implies that loss of Setdb1 may be involved in the cleft palate development by decreasing SMAD-dependent BMP signaling through Pax9.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/fisiología , Hueso Paladar/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular/genética , Fisura del Paladar/genética , N-Metiltransferasa de Histona-Lisina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Cresta Neural/fisiopatología , Factor de Transcripción PAX9/genética , Factor de Transcripción PAX9/metabolismo , Hueso Paladar/anomalías , Hueso Paladar/patología , Proteínas Smad/genética , Proteínas Smad/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Nat Commun ; 12(1): 2046, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824347

RESUMEN

Bone formation represents a heritable trait regulated by many signals and complex mechanisms. Its abnormalities manifest themselves in various diseases, including sclerosing bone disorder (SBD). Exploration of genes that cause SBD has significantly improved our understanding of the mechanisms that regulate bone formation. Here, we discover a previously unknown type of SBD in four independent families caused by bi-allelic loss-of-function pathogenic variants in TMEM53, which encodes a nuclear envelope transmembrane protein. Tmem53-/- mice recapitulate the human skeletal phenotypes. Analyses of the molecular pathophysiology using the primary cells from the Tmem53-/- mice and the TMEM53 knock-out cell lines indicates that TMEM53 inhibits BMP signaling in osteoblast lineage cells by blocking cytoplasm-nucleus translocation of BMP2-activated Smad proteins. Pathogenic variants in the patients impair the TMEM53-mediated blocking effect, thus leading to overactivated BMP signaling that promotes bone formation and contributes to the SBD phenotype. Our results establish a previously unreported SBD entity (craniotubular dysplasia, Ikegawa type) and contribute to a better understanding of the regulation of BMP signaling and bone formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Huesos/patología , Proteínas de la Membrana/metabolismo , Esclerosis/patología , Transducción de Señal , Proteínas Smad/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Núcleo Celular/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Mutantes , Mutación/genética , Osteoblastos/patología , Linaje , Fosforilación , Cráneo/patología , Adulto Joven
11.
Dev Dyn ; 250(8): 1125-1139, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33667029

RESUMEN

BACKGROUND: Foxc2 is a member of the winged helix/forkhead (Fox) box family of transcription factors. Loss of function of Foxc2 causes craniofacial abnormalities such as cleft palate and deformed cranial base, but its role during craniofacial development remains to be elucidated. RESULTS: The contributions of Foxc2-positive and its descendant cells to the craniofacial structure at E18.5 were examined using a tamoxifen-inducible Cre driver mouse (Foxc2-CreERT2) crossed with the R26R-LacZ reporter mouse. Foxc2 expression at E8.5 is restricted to the cranial mesenchyme, contributing to specific components including the cranial base, sensory capsule, tongue, upper incisor, and middle ear. Expression at E10.5 was still positively regulated in most of those regions. In situ hybridization analysis of Foxc2 and its closely related gene, Foxc1, revealed that expression domains of these genes largely overlap in the cephalic mesenchyme. Meanwhile, the tongue expressed Foxc2 but not Foxc1, and its development was affected by the neural crest-specific deletion of Foxc2 in mice (Wnt1-Cre; Foxc2fl/fl ). CONCLUSIONS: Foxc2 is expressed in cranial mesenchyme that contributes to specific craniofacial tissue components from an early stage, and it seems to be involved in their development in cooperation with Foxc1. Foxc2 also has its own role in tongue development.


Asunto(s)
Linaje de la Célula/genética , Anomalías Craneofaciales/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Animales , Anomalías Craneofaciales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/embriología , Cresta Neural/metabolismo
12.
Sci Rep ; 11(1): 2092, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483579

RESUMEN

Neural crest cells (NCCs) give rise to various tissues including neurons, pigment cells, bone and cartilage in the head. Distal-less homeobox 5 (Dlx5) is involved in both jaw patterning and differentiation of NCC-derivatives. In this study, we investigated the differentiation potential of head mesenchyme by forcing Dlx5 to be expressed in mouse NCC (NCCDlx5). In NCCDlx5 mice, differentiation of dermis and pigment cells were enhanced with ectopic cartilage (ec) and heterotopic bone (hb) in different layers at the cranial vertex. The ec and hb were derived from the early migrating mesenchyme (EMM), the non-skeletogenic cell population located above skeletogenic supraorbital mesenchyme (SOM). The ec developed within Foxc1+-dura mater with increased PDGFRα signalling, and the hb formed with upregulation of BMP and WNT/ß-catenin signallings in Dermo1+-dermal layer from E11.5. Since dermal cells express Runx2 and Msx2 in the control, osteogenic potential in dermal cells seemed to be inhibited by an anti-osteogenic function of Msx2 in normal context. We propose that, after the non-skeletogenic commitment, the EMM is divided into dermis and meninges by E11.5 in normal development. Two distinct responses of the EMM, chondrogenesis and osteogenesis, to Dlx5-augmentation in the NCCDlx5 strongly support this idea.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Cresta Neural/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Condrogénesis , Mesodermo/citología , Ratones , Cresta Neural/citología , Osteogénesis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo
13.
Dev Dyn ; 249(5): 622-635, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31900962

RESUMEN

BACKGROUND: Splicing factor 3B subunit 4 (SF3B4) is a causative gene of an acrofacial dysostosis, Nager syndrome. Although in vitro analyses of SF3B4 have proposed multiple noncanonical functions unrelated to splicing, less information is available based on in vivo studies using model animals. RESULTS: We performed expression and functional analyses of Sf3b4 in mice. The mouse Sf3b4 transcripts were found from two-cell stage, and were ubiquitously present during embryogenesis with high expression levels in several tissues such as forming craniofacial bones and brain. In contrast, expression of a pseudogene-like sequence of mouse Sf3b4 (Sf3b4_ps) found by in silico survey was not detected up to embryonic day 10. We generated a Sf3b4 knockout mouse using CRISPR-Cas9 system. The homozygous mutant mouse of Sf3b4 was embryonic lethal. The heterozygous mutant of Sf3b4 mouse (Sf3b4+/- ) exhibited smaller body size compared to the wild-type from postnatal to adult period, as well as homeotic posteriorization of the vertebral morphology and flattened calvaria. The flattened calvaria appears to be attributable to mild microcephaly due to a lower cell proliferation rate in the forebrain. CONCLUSIONS: Our study suggests that Sf3b4 controls anterior-posterior patterning of the axial skeleton and guarantees cell proliferation for forebrain development in mice.


Asunto(s)
Prosencéfalo/metabolismo , Esqueleto/metabolismo , Animales , Femenino , Masculino , Ratones , Mutación/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
14.
J Biomater Sci Polym Ed ; 29(15): 1876-1894, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30156966

RESUMEN

Different approaches have been developed to improve the scaffold properties that provide structural support and biological interaction to achieve the desired environment for tissue regeneration. We previously reported that addition of human fibroblast growth factor 18 (hFGF18) to acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogel-crosslinked (NanoClik) hydrogels that contain human bone morphogenetic protein 2 (hBMP2) stabilized bone healing in mouse calvarial defect model. In this study, we evaluated the use of disc-shaped dried nanogel-crosslinked gel as carriers of growth factors in order to seek possible clinical application in future. Both conventionally-dried NanoClik disc and nanogel-crosslinked porous (NanoCliP) disc made by freeze-drying that contained the growth factors induced bone healing but not as much as with NanoClik hydrogel application but addition of RGD peptides (RGD-NanoCliP disc) improved the healing. All type of discs showed the same biphasic ovalbumin-Alexa Fluor 488 protein release profile in vitro, an initial burst followed by a gradual sustained release more than one week, which was confirmed in vivo. Histological analysis showed remarkable new bone formation with more calcification in RGD-NanoCliP disc with the growth factors and the osteogenesis appeared to begin in the dura mater in contact with the disc. These observations suggest: (1) the fitness of the durable discs to the bone defect is a critical factor for bone healing, which is supplemented by addition of RGD peptides, (2) the porosity is suitable for osteoblast recruitment, (3) growth factor release pattern of the CHPOA nanogel based gels is ideal for bone healing.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Glucanos/química , Hidrogeles/química , Nanopartículas/química , Polietilenglicoles/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular , Liberación de Fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Oligopéptidos/química , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteogénesis , Ovalbúmina/farmacología , Cráneo/efectos de los fármacos , Cráneo/lesiones , Andamios del Tejido/química
15.
Congenit Anom (Kyoto) ; 58(5): 158-166, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29322554

RESUMEN

The cranial base is a structure mainly formed through endochondral ossification and integrated into the craniofacial complex, which acts as an underlying platform for the developing brain. Foxc1 is an indispensable regulator during intramembranous and endochondral ossification. In this study, we found that the spontaneous loss of Foxc1 function in a mouse (congenital hydrocephalous), Foxc1ch/ch , demonstrated the anterior cranial base defects, including unossified presphenoid and lack of middle part of the basisphenoid bone. Hypoplastic presphenoid primordial cartilage (basal portion of the trabecular cartilage [bTB]) and a lack of the middle part of basisphenoid primordial cartilage (the hypophyseal cartilage) were consistently observed at earlier developmental stage. Foxc1 was expressed robustly and ubiquitously in undifferentiated mesenchyme of the cranial base-forming area in E11.0 wild-type fetuses. Once chondrogenesis commenced, the expression was downregulated and later limited to the perichondrium. Detection of transcripts of Collagen type2 A1 (Col2a1) revealed that both bTB and the anterior part of the hypophyseal cartilage developing anterior to the persistent epithelial stalk of the anterior lobe of the pituitary gland were suppressed in the Foxc1ch/ch . Proliferation activity of chondrocyte precursor cells was higher in the Foxc1ch/ch . Loss of Foxc1 function only in the neural crest cell lineage (Wnt1-cre;Foxc1ch/flox ) showed ossification of the posterior part of the hypophyseal cartilage derived from the mesoderm. These findings suggest that Foxc1 is an important regulator to further chondrogenesis and initiate the ossification of the presphenoid and basisphenoid bones.


Asunto(s)
Colágeno Tipo II/genética , Factores de Transcripción Forkhead/genética , Cresta Neural/crecimiento & desarrollo , Base del Cráneo/crecimiento & desarrollo , Animales , Condrocitos/metabolismo , Condrogénesis/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/crecimiento & desarrollo , Ratones , Cresta Neural/metabolismo , Base del Cráneo/metabolismo
16.
Development ; 144(18): 3315-3324, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807901

RESUMEN

We have proposed that independent origins of the tympanic membrane (TM), consisting of the external auditory meatus (EAM) and first pharyngeal pouch, are linked with distinctive middle ear structures in terms of dorsal-ventral patterning of the pharyngeal arches during amniote evolution. However, previous studies have suggested that the first pharyngeal arch (PA1) is crucial for TM formation in both mouse and chick. In this study, we compare TM formation along the anterior-posterior axis in these animals using Hoxa2 expression as a marker of the second pharyngeal arch (PA2). In chick, the EAM begins to invaginate at the surface ectoderm of PA2, not at the first pharyngeal cleft, and the entire TM forms in PA2. Chick-quail chimera that have lost PA2 and duplicated PA1 suggest that TM formation is achieved by developmental interaction between a portion of the EAM and the columella auris in PA2, and that PA1 also contributes to formation of the remaining part of the EAM. By contrast, in mouse, TM formation is highly associated with an interdependent relationship between the EAM and tympanic ring in PA1.


Asunto(s)
Región Branquial/embriología , Membrana Timpánica/embriología , Animales , Región Branquial/metabolismo , Embrión de Pollo , Pollos , Conducto Auditivo Externo/embriología , Oído Medio/embriología , Embrión de Mamíferos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Fenotipo , Codorniz/embriología , Membrana Timpánica/metabolismo
17.
Congenit Anom (Kyoto) ; 56(1): 12-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26754466

RESUMEN

The tympanic membrane is a thin layer that originates from the ectoderm, endoderm, and mesenchyme. Molecular-genetic investigations have revealed that interaction between epithelial and mesenchymal cells in the pharyngeal arches is essential for development of the tympanic membrane. We have recently reported that developmental mechanisms underlying the tympanic membrane seem to be different between mouse and chicken, suggesting that the tympanic membrane evolved independently in mammals and non-mammalian amniotes. In this review, we summarize previous studies of tympanic membrane formation in the mouse. We also discuss its formation in amniotes from an evolutionary point of view.


Asunto(s)
Membrana Timpánica/embriología , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Factor de Transcripción MSX1/fisiología , Mamíferos , Membrana Timpánica/anomalías , Membrana Timpánica/metabolismo
18.
Nat Commun ; 6: 6853, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25902370

RESUMEN

The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution.


Asunto(s)
Ambystoma mexicanum/embriología , Endotelina-1/genética , Lagartos/embriología , Ratones/embriología , Receptor de Endotelina A/genética , Tiburones/embriología , Membrana Timpánica/embriología , Ambystoma mexicanum/genética , Animales , Secuencia de Bases , Embrión de Mamíferos , Embrión no Mamífero , Endotelina-1/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/genética , Proteína Goosecoide/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lagartos/genética , Mandíbula/embriología , Maxilar/embriología , Ratones/genética , Datos de Secuencia Molecular , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Receptor de Endotelina A/metabolismo , Tiburones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Exp Zool B Mol Dev Evol ; 324(3): 244-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25052382

RESUMEN

The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.


Asunto(s)
Hombro/anatomía & histología , Tortugas/anatomía & histología , Anatomía Comparada , Exoesqueleto/anatomía & histología , Exoesqueleto/embriología , Animales , Anuros/anatomía & histología , Evolución Biológica , Escápula/anatomía & histología , Escápula/embriología , Hombro/embriología , Articulación del Hombro/anatomía & histología , Articulación del Hombro/embriología , Tortugas/embriología
20.
Clin Cardiol ; 37(9): 536-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25196980

RESUMEN

BACKGROUND: Congenital coronary-pulmonary fistulas (CPFs) are commonly unilateral, but bilateral and multilateral fistulas may occur. In multilateral CPFs, the value of a multidetector computed tomography (MDCT) imaging technique as an adjuvant to coronary angiography (CAG) is eminent. The purpose of this study was to describe the clinical presentation, diagnostic modalities, and management of coincidentally detected congenital CPFs. HYPOTHESIS: Unilateral and multilateral coronary-pulmonary fistulas are increasingly detected due to the wide speard application of multidetector computed tomography which might be a supplementary or replacing to conventional coronary angiography. METHODS: We evaluated 14 adult patients with congenital coronary artery fistulas (CAFs) who were identified from several Dutch cardiology departments. RESULTS: Fourteen adult patients (5 female and 9 male), with a mean age of 57.5 years (range, 24-80 years) had the following abnormal findings: audible systolic cardiac murmur (n = 4), chronic atrial fibrillation (n = 2), nonsustained ventricular tachycardia (n = 1), and cardiomegaly on chest x-ray (n = 2). Echocardiography revealed normal findings with trivial valvular abnormalities (n = 9), depressed left ventricle systolic function (n = 3), and severe mitral regurgitation and atrial dilatation (n = 2). The findings in the rest of the patients were unremarkable. CAG and MDCT were used as a diagnostic imaging techniques either alone (CAG, n = 6; MDCT, n = 1) or in combination (n = 7). Single modality and multimodality diagnostic methods revealed 22 fistulas including CPFs (n = 15), coronary cameral fistulas terminating into the right (n = 2) and the left atrium (n = 1), and systemic-pulmonary fistulas (n = 4). Of all of the fistulas, 10 were unilateral, 6 were bilateral, and 6 was hexalateral. (13) N-ammonia positron emission tomography-computed tomography was performed in 3 patients revealing decreased myocardial perfusion reserve. CONCLUSIONS: CAG remains the gold standard for detection of CPFs. An adjuvant technique using MDCT provides full anatomical details of the fistulas.


Asunto(s)
Fístula Arterio-Arterial/diagnóstico por imagen , Fístula Arterio-Arterial/terapia , Angiografía Coronaria/métodos , Anomalías de los Vasos Coronarios/diagnóstico por imagen , Anomalías de los Vasos Coronarios/terapia , Tomografía Computarizada Multidetector , Arteria Pulmonar , Adulto , Anciano , Anciano de 80 o más Años , Fístula Arterio-Arterial/fisiopatología , Anomalías de los Vasos Coronarios/fisiopatología , Ecocardiografía , Electrocardiografía Ambulatoria , Embolización Terapéutica , Femenino , Humanos , Hallazgos Incidentales , Ligadura , Masculino , Persona de Mediana Edad , Imagen Multimodal , Imagen de Perfusión Miocárdica/métodos , Países Bajos , Valor Predictivo de las Pruebas , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Tomografía Computarizada de Emisión de Fotón Único , Resultado del Tratamiento , Procedimientos Quirúrgicos Vasculares , Espera Vigilante , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA