Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(17): 5669-5684, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32179649

RESUMEN

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Activación Enzimática , Zinc/metabolismo , Animales , Proteínas Aviares/metabolismo , Línea Celular , Pollos , Aparato de Golgi/metabolismo , Humanos , Multimerización de Proteína
2.
Commun Biol ; 1: 113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271993

RESUMEN

Zinc deficiency causes myriad pathophysiological symptoms, but why distinct phenotypes are generated by zinc deficiency remains unclear. Considering that several ectoenzymes involved in purinergic signaling through extracellular adenine-nucleotide hydrolysis possess zinc ions in their active sites, and disorders in purinergic signaling result in diverse diseases that are frequently similar to those caused by zinc deficiency, herein we examine whether zinc deficiency affects extracellular adenine-nucleotide metabolism. Zinc deficiency severely impairs the activities of major ectoenzymes (ENPP1, ENPP3, NT5E/CD73, and TNAP), and also strongly suppresses adenine-nucleotide hydrolysis in cell-membrane preparations or rat plasma, thereby increasing ATP and ADP levels and decreasing adenosine levels. Thus, zinc deficiency delays both extracellular ATP clearance and adenosine generation, and zinc modulates extracellular adenine-nucleotide metabolism. Since the finely tuned balance between extracellular adenine nucleotides and adenosine is critical for purinergic signaling, these findings provide a novel insight into why zinc deficiency results in diverse symptoms.

3.
Int J Mol Sci ; 18(10)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29048339

RESUMEN

More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Vías Secretoras , Zinc/metabolismo , Animales , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Estrés del Retículo Endoplásmico , Humanos
4.
Brain Res ; 1675: 51-60, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28866055

RESUMEN

Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells.


Asunto(s)
Diferenciación Celular/fisiología , Iris/citología , Iris/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Células Cultivadas , Iris/química , Células-Madre Neurales/química , Neuronas/química , Células Fotorreceptoras Retinianas Bastones/química , Sus scrofa , Porcinos
5.
Biochim Biophys Acta Gen Subj ; 1861(7): 1813-1824, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28347842

RESUMEN

BACKGROUND: The degradation of heme significantly contributes to cytoprotective effects against oxidative stress and inflammation. The enzyme heme oxygenase-1 (HO-1), involved in the degradation of heme, forms carbon monoxide (CO), ferrous iron, and bilirubin in conjunction with biliverdin reductase, and is induced by various stimuli including oxidative stress and heavy metals. We examined the involvement of heme metabolism in the induction of HO-1 by the inducers sulforaphane and sodium arsenite. METHODS: We examined the expression of HO-1 in sulforaphane-, sodium arsenite- and CORM3-treated HEK293T cells, by measuring the transcriptional activity and levels of mRNA and protein. RESULTS: The blockade of heme biosynthesis by succinylacetone and N-methyl protoporphyrin, which are inhibitors of heme biosynthesis, markedly decreased the induction of HO-1. The knockdown of the first enzyme in the biosynthesis of heme, 5-aminolevulinic acid synthase, also decreased the induction of HO-1. The cessation of HO-1 induction occurred at the transcriptional and translational levels, and was mediated by the activation of the heme-binding transcriptional repressor Bach1 and translational factor HRI. CO appeared to improve the expression of HO-1 at the transcriptional and translational levels. CONCLUSIONS: We demonstrated the importance of heme metabolism in the stress-inducible expression of HO-1, and also that heme and its degradation products are protective factors for self-defense responses. GENERAL SIGNIFICANCE: The key role of heme metabolism in the stress-inducible expression of HO-1 may promote further studies on heme and its degradation products as protective factors of cellular stresses and iron homeostasis in specialized cells, organs, and whole animal systems.


Asunto(s)
Hemo-Oxigenasa 1/genética , Hemo/metabolismo , Arsenitos/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Monóxido de Carbono/fisiología , Inducción Enzimática , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HEK293 , Células HeLa , Hemo-Oxigenasa 1/biosíntesis , Heptanoatos/farmacología , Humanos , Isotiocianatos/farmacología , Protoporfirinas/farmacología , Compuestos de Sodio/farmacología , Sulfóxidos
6.
J Physiol Sci ; 67(2): 283-301, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28130681

RESUMEN

Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.


Asunto(s)
Homeostasis/fisiología , Zinc/metabolismo , Animales , Proteínas Portadoras/metabolismo , Humanos , Transducción de Señal/fisiología
7.
Biochem J ; 473(17): 2611-21, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27303047

RESUMEN

Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Línea Celular , Pollos
8.
J Biol Chem ; 291(28): 14773-87, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226609

RESUMEN

Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn(43), which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys(52) and Leu(242) in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Homología de Secuencia de Aminoácido
9.
Arch Biochem Biophys ; 611: 37-42, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27046342

RESUMEN

In humans, about 1000 enzymes are estimated to bind zinc. In most of these enzymes, zinc is present at the active site; thus, these enzymes are functional as "zinc-requiring enzymes". Of these zinc-requiring enzymes, zinc-requiring ectoenzymes (defined as secretory, membrane-bound, and organelle-resident enzymes) have received much attention because of their important physiological functions, involvement in a number of diseases, and potential applications as therapeutic targets for diseases. Zinc-requiring ectoenzymes may become active by coordinating zinc at their active site during the secretory process, which requires elaborate control of zinc mobilization from the extracellular milieu to the cytosol and then lumen in the early secretory pathway. Therefore, zinc transporters should properly maintain the process at systemic, cellular, and subcellular levels by mobilizing zinc across biological membranes. However, few studies have examined the mechanisms underlying this process. In this review, current knowledge of the activation process of zinc-requiring ectoenzymes by ZnT zinc transporters in the early secretory pathway is briefly reviewed at the molecular level, with a focus on tissue-nonspecific alkaline phosphatase. Moreover, we also discuss whether zinc-chaperone proteins function during the activation of these enzymes.


Asunto(s)
Proteínas Portadoras/metabolismo , Vías Secretoras , Zinc/química , Animales , Dominio Catalítico , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Dimerización , Retículo Endoplásmico/metabolismo , Enzimas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica
10.
Sci Rep ; 5: 10488, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25990790

RESUMEN

It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage.


Asunto(s)
Bilirrubina/metabolismo , Citoprotección/fisiología , Hemo-Oxigenasa 1/metabolismo , Hemo/metabolismo , Arsenitos/farmacología , Cloruro de Cadmio/farmacología , Línea Celular Tumoral , Ferroquelatasa/antagonistas & inhibidores , Ferroquelatasa/metabolismo , Colorantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Hemo/biosíntesis , Hemo-Oxigenasa 1/antagonistas & inhibidores , Células Hep G2 , Humanos , Células MCF-7 , Malatos/farmacología , Mitocondrias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Unión Proteica , Compuestos de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA