Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(24): eadk5747, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875333

RESUMEN

In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems; however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upward of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a statistical tracking algorithm (PEPT-EM) to achieve a sensitivity of 4 becquerel per cell and a streamlined workflow to reliably label single cells with over 50 becquerel per cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of the method, we tracked the fate of more than 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.


Asunto(s)
Rastreo Celular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Análisis de la Célula Individual , Imagen de Cuerpo Entero , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Análisis de la Célula Individual/métodos , Rastreo Celular/métodos , Imagen de Cuerpo Entero/métodos , Ratones , Humanos , Fluorodesoxiglucosa F18 , Línea Celular Tumoral , Algoritmos , Melanoma/diagnóstico por imagen , Melanoma/patología
2.
Sci Rep ; 14(1): 2352, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287067

RESUMEN

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.


Asunto(s)
Diabetes Mellitus , Factor A de Crecimiento Endotelial Vascular , Humanos , Conejos , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/farmacología , Neovascularización Fisiológica , Isquemia/patología , Diabetes Mellitus/patología , Alginatos/uso terapéutico , Miembro Posterior/irrigación sanguínea
3.
Res Sq ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398327

RESUMEN

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

4.
Nat Protoc ; 18(7): 2256-2282, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37316563

RESUMEN

Human skeletal stem cells (hSSCs) hold tremendous therapeutic potential for developing new clinical strategies to effectively combat congenital and age-related musculoskeletal disorders. Unfortunately, refined methodologies for the proper isolation of bona fide hSSCs and the development of functional assays that accurately recapitulate their physiology within the skeleton have been lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs), commonly used to describe the source of precursors for osteoblasts, chondrocytes, adipocytes and stroma, have held great promise as the basis of various approaches for cell therapy. However, the reproducibility and clinical efficacy of these attempts have been obscured by the heterogeneous nature of BMSCs due to their isolation by plastic adherence techniques. To address these limitations, our group has refined the purity of individual progenitor populations that are encompassed by BMSCs by identifying defined populations of bona fide hSSCs and their downstream progenitors that strictly give rise to skeletally restricted cell lineages. Here, we describe an advanced flow cytometric approach that utilizes an extensive panel of eight cell surface markers to define hSSCs; bone, cartilage and stromal progenitors; and more differentiated unipotent subtypes, including an osteogenic subset and three chondroprogenitors. We provide detailed instructions for the FACS-based isolation of hSSCs from various tissue sources, in vitro and in vivo skeletogenic functional assays, human xenograft mouse models and single-cell RNA sequencing analysis. This application of hSSC isolation can be performed by any researcher with basic skills in biology and flow cytometry within 1-2 days. The downstream functional assays can be performed within a range of 1-2 months.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Linaje de la Célula , Reproducibilidad de los Resultados , Diferenciación Celular/fisiología , Huesos , Células de la Médula Ósea , Células Cultivadas
5.
Acta Biomater ; 167: 425-435, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321528

RESUMEN

Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.


Asunto(s)
Hiperlipidemias , Enfermedades Vasculares Periféricas , Conejos , Ratones , Animales , Sindecano-4/farmacología , Sindecano-4/uso terapéutico , Factor 2 de Crecimiento de Fibroblastos , Neovascularización Fisiológica , Isquemia/terapia , Miembro Posterior/irrigación sanguínea , Modelos Animales de Enfermedad
6.
Gels ; 9(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37232969

RESUMEN

Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.

7.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993249

RESUMEN

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

8.
Biomaterials ; 291: 121865, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332287

RESUMEN

OBJECTIVE: While lipid-lowering drugs have become a mainstay of clinical therapy these treatments only slow the progression of the disease and can have side effects. Thus, new treatment options are needed to supplement the effects of lipid lowering therapy for treating atherosclerosis. We examined the use of an inexpensive and widely available marine polysaccharide rhamnan sulfate as an oral therapeutic for limiting vascular inflammation and atherosclerosis. METHODS AND RESULTS: We found rhamnan sulfate enhanced the barrier function of endothelial cells, preventing the deposition of LDL and maintaining barrier function even in the presence of glycocalyx-degrading enzymes. Rhamnan sulfate was also found to bind directly to FGF-2, PDGF-BB and NF-κB subunits with high affinity. In addition, rhamnan sulfate was a potent inhibitor of NF-κB pathway activation in endothelial cells by TNF-α. We treated ApoE-/- mice with a high fat diet for 4 weeks and then an addition 9 weeks of high fat diet with or without rhamnan sulfate. Rhamnan sulfate reduced vascular inflammation and atherosclerosis in both sexes of ApoE-/- mice but had a stronger therapeutic effect in female mice. Oral consumption of rhamnan sulfate induced a significant decrease in cholesterol plasma levels in female mice but not in male mice. In addition, there was a marked reduction in inflammation for female mice in the liver and aortic root in comparison to male mice. CONCLUSIONS: Rhamnan sulfate has beneficial effects in reducing inflammation, binding growth factors and NF-κB, enhancing endothelial barrier function and reducing atherosclerotic plaque formation in ApoE-/- mice.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Masculino , Femenino , Ratones , Animales , Placa Aterosclerótica/tratamiento farmacológico , FN-kappa B/metabolismo , Células Endoteliales/metabolismo , Sulfatos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL
9.
Nat Commun ; 13(1): 2497, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523773

RESUMEN

Stem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.


Asunto(s)
Mastocitos , Factor de Células Madre , Animales , Células Endoteliales/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Lípidos , Mastocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Factor de Células Madre/metabolismo
10.
Nanoscale ; 13(6): 3644-3653, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33538275

RESUMEN

Recent advances in immunotherapy have highlighted a need for therapeutics that initiate immunogenic cell death in tumors to stimulate the body's immune response to cancer. This study examines whether laser-generated bubbles surrounding nanoparticles ("nanobubbles") induce an immunogenic response for cancer treatment. A single nanosecond laser pulse at 1064 nm generates micron-sized bubbles surrounding gold nanorods in the cytoplasm of breast cancer cells. Cell death occurred in cells treated with nanorods and irradiated, but not in cells with irradiation treatment alone. Cells treated with nanorods and irradiation had increased damage-associated molecular patterns (DAMPs), including increased expression of chaperone proteins human high mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and heat shock protein 70 (HSP70). This enhanced expression of DAMPs led to the activation of dendritic cells. Overall, this treatment approach is a rapid and highly specific method to eradicate tumor cells with simultaneous immunogenic cell death signaling, showing potential as a combination strategy for immunotherapy.


Asunto(s)
Neoplasias de la Mama , Proteína HMGB1 , Neoplasias de la Mama/terapia , Calreticulina/metabolismo , Humanos , Muerte Celular Inmunogénica , Rayos Láser
11.
PLoS One ; 15(2): e0225267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084158

RESUMEN

Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Expresión Génica , Genoma Humano , Piel/patología , Adulto , Anciano , Anciano de 80 o más Años , Señalización del Calcio/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Masculino , Persona de Mediana Edad , Seudogenes/genética , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Úlcera , Cicatrización de Heridas , Adulto Joven
12.
PLoS One ; 13(1): e0189967, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29342150

RESUMEN

Simulated Body Fluid (SBF) has served as a useful standard to check the bioactivity of implant materials for years. However, it is not perfectly able to imitate human serum; sometimes disparities between the SBF test and animal test were confirmed. Therefore, to ensure the reliability of the results of the SBF test obtained from our previous study, an animal study was performed to check osteoconductivity of surface modified implant materials. Three types of solution processes, hydrothermal (H), electrochemical (E), and hydrothermal-electrochemical (HE), were performed on the Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) to improve its bioactivity, and their bioactivities were measured in vivo using bone-implant contacts (BICs). BICs of the HE- and H-treated samples were significantly higher than that of the control. Metal ion diffusion towards the bone was also evaluated to examine the adverse effect of metal ions. No metal ion diffusion was observed, indicating the safety of our solution processed implant materials.


Asunto(s)
Regeneración Ósea , Niobio/química , Tantalio/química , Titanio/química , Oligoelementos/farmacocinética , Circonio/química , Animales , Ratas , Ratas Sprague-Dawley , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...