Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1368-1375, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37539819

RESUMEN

Weaning is a critical period in raising pigs. Novel animal feed additives that promote gut health and regulate immune function of piglets without antibiotics are needed. In this study, we aimed to test the ability of mesobiliverdin IXα-enriched microalgae (MBV IXα-enriched microalgae) to eliminate reliance on antibiotics to promote intestinal health in piglets. Eighty 28-day-old weaned piglets were randomly allocated to four groups each with four replicate pens and five piglets per pen. The dietary treatments were a basal diet as control (NC), basal diet plus 0.05% tylosin (PC), basal diet plus 0.1% or 0.5% MBV IXα-enriched microalgae as low (MBV-SP1) or high (MBV-SP2) dose respectively. All treated animals showed no significant differences in live weight, average daily gain and feed efficiency compared to control animals. Histological examination showed that MBV-SP1 and particularly MBV-SP2 increased the ratio of villus height to crypt depth in the jejunum and ileum compared to NC (p < 0.05). Similarly, tylosin treatment also increased villi lengths and the ratio of villus height to crypt depth in the jejunum and ileum compared to the NC (p < 0.05). MBV-SP1 and particularly MBV-SP2 reduced the levels of inflammatory cytokines interleukin-6 and tumour necrosis factor-alpha in the small intestine. MBV-SP2 and tylosin similarly reduced the lipid peroxidation marker (TBARS value) in the duodenum and ileum. In conclusion, feed supplementation with MBV IXα-enriched microalgae improved gut health by villus height and production of immunomodulators that correlated with down-regulated secretion of inflammatory cytokines.


Asunto(s)
Suplementos Dietéticos , Microalgas , Animales , Porcinos , Destete , Tilosina/farmacología , Antibacterianos/farmacología , Dieta/veterinaria , Citocinas , Alimentación Animal/análisis
2.
Front Microbiol ; 13: 1000199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212866

RESUMEN

Widely-used Streptomyces-derived antibacterial aminoglycosides have encountered challenges because of antibiotic resistance and toxicity. Today, they are largely relegated to medicinal topical applications. However, chemical modification to amphiphilic aminoglycosides can revive their efficacy against bacterial pathogens and expand their targets to other pathogenic microbes and disorders associated with hyperactive connexin hemichannels. For example, amphiphilic versions of neomycin and neamine are not subject to resistance and have expanded antibacterial spectra, and amphiphilic kanamycins are effective antifungals and have promising therapeutic uses as connexin hemichannel inhibitors. With further research and discoveries aimed at improved formulations and delivery, amphiphilic aminoglycosides may achieve new horizons in pharmacopeia and agriculture for Streptomyces aminoglycosides beyond just serving as topical antibacterials.

3.
Biochem Biophys Res Commun ; 619: 56-61, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35738065

RESUMEN

Heme oxygenase-1 (HO-1) expression promotes osteogenesis, but the mechanisms remain unclear and therapeutic strategies using it to target bone disorders such as osteoporosis have not progressed. Mesobiliverdin IXα is a naturally occurring bilin analog of HO-1 catalytic product biliverdin IXα. Inclusion of mesobiliverdin IXα in the feed diet of ovariectomized osteoporotic mice was observed to increase femur bone volume, trabecular thickness and osteogenesis serum markers osteoprotegrin and osteocalcin and to decrease bone resorption serum markers cross-linked N-teleopeptide and tartrate-resistant acid phosphatase 5b. Moreover, in vitro exposure of human bone marrow mesenchymal stem cells to mesobiliverdin IXα enhanced osteogenic differentiation efficiency by two-fold over non-exposed controls. Our results imply that mesobiliverdin IXα promotes osteogenesis in ways that reflect the potential therapeutic effects of induced HO-1 expression in alleviating osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Animales , Biliverdina/análogos & derivados , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Osteogénesis , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
4.
Anal Chim Acta ; 1128: 221-230, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32825906

RESUMEN

Diesel exhaust particles (DEPs) are major constituents of air pollution and associated with numerous oxidative stress-induced human diseases. In vitro toxicity studies are useful for developing a better understanding of species-specific in vivo conditions. Conventional in vitro assessments based on oxidative biomarkers are destructive and inefficient. In this study, Raman spectroscopy, as a non-invasive imaging tool, was used to capture the molecular fingerprints of overall cellular component responses (nucleic acid, lipids, proteins, carbohydrates) to DEP damage and antioxidant protection. We apply a novel data visualization algorithm called PHATE, which preserves both global and local structure, to display the progression of cell damage over DEP exposure time. Meanwhile, a mutual information (MI) estimator was used to identify the most informative Raman peaks associated with cytotoxicity. A health index was defined to quantitatively assess the protective effects of two antioxidants (resveratrol and mesobiliverdin IXα) against DEP induced cytotoxicity. In addition, a number of machine learning classifiers were applied to successfully discriminate different treatment groups with high accuracy. Correlations between Raman spectra and immunomodulatory cytokine and chemokine levels were evaluated. In conclusion, the combination of label-free, non-disruptive Raman micro-spectroscopy and machine learning analysis is demonstrated as a useful tool in quantitative analysis of oxidative stress induced cytotoxicity and for effectively assessing various antioxidant treatments, suggesting that this framework can serve as a high throughput platform for screening various potential antioxidants based on their effectiveness at battling the effects of air pollution on human health.


Asunto(s)
Antioxidantes , Material Particulado , Antioxidantes/farmacología , Humanos , Aprendizaje Automático , Estrés Oxidativo , Espectrometría Raman , Emisiones de Vehículos
5.
Sci Rep ; 10(1): 5948, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246056

RESUMEN

Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using  a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also  analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not  a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.


Asunto(s)
Aspergillus/fisiología , Bacillus subtilis/fisiología , Procesos de Crecimiento Celular/fisiología , Escherichia coli/fisiología , Estrés Fisiológico/fisiología , Supervivencia Celular , Medios de Cultivo , Temperatura
6.
Front Vet Sci ; 7: 586813, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33553275

RESUMEN

Gut inflammatory bowel diseases (IBDs) links to animal medicinal feed and antibiotic-resistance are fueling major economic impacts in the agricultural livestock industry. New animal feeds that promote livestock gut health and control of IBDs without antibiotics are needed. This study investigates the effects of mesobiliverdin IXα (MBV)-enriched microalgae spirulina extracts on the growth performance, blood parameters, intestinal morphology, and gut microbiota of broilers. A total of 288 1-day-old broiler chicks (Arbor Acres) were randomly allotted to six dietary treatments (4 pens/treatment and 12 birds/pen). The dietary treatments comprised a basal diet as control (CON), basal diet plus 0.05 and 0.1% microalgae extract as low and high dose, respectively (SP1 and SP2), basal diet plus 0.05 and 0.1% MBV-enriched microalgae extract as low and high dose, respectively (MBV-SP1 and MBV-SP2), and basal diet plus 0.1% amoxicillin (AMX). All treated animals showed no significant differences in live weight, average daily gain, and feed efficiency compared to control animals. Histological examination showed that AMX treatment decreased the villi lengths of the duodenum and ileum below control villi length (P < 0.05) while MBV-SP1 and particularly MBV-SP2 increased villi lengths in the duodenum, jejunum, and ileum above AMX -treatment lengths (P < 0.05). The Firmicutes/Bacteroidetes ratio increased in the cecum of broilers fed AMX (P < 0.05) while SP2, MBV-SP1, and MBV-SP2-fed animals showed (in order) increasing ratios up to the AMX level. The abundance of bacterial species of the genus Lactobacillus increased in MBV-SP1 and MBV-SP2-fed groups including a striking increase in Lactobacillus salivarius abundance with MBV-SP2 (P < 0.05). Feeding MBV-SP1 and MBV-SP2 decreased the level of pro-inflammatory cytokine IL-6 in plasma of broilers to a greater extent than SP1 and SP2. These results reveal that MBV-enriched microalgae extracts improve the intestinal health and beneficial microflora composition of broilers.

7.
Eur J Med Chem ; 182: 111639, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31470306

RESUMEN

Amphiphilic kanamycins bearing hydrophobic modifications at the 6″ position have attracted interest due to remarkable antibacterial-to-antifungal switches in bioactivity. In this report, we investigate a hurdle that hinders practical applications of these amphiphilic kanamycins: a cost-effective synthesis that allows the incorporation of various connecting functionalities to which the hydrophobic moieties are connected to the kanamycin core. A cost-effective tosylation enables various modifications at the 6″ position, which is scalable to a 90-g scale. The connecting functionalities, such as amine and thiol, were not the dominant factor for biological activity. Instead, the linear chain length played the decisive role. Amphiphilic kanamycin attached with tetradecyl (C14) or hexadecyl (C16) showed strong antifungal and modest antibacterial activities than with shorter chains (C6-C10). However, increases in chain length were closely correlated with an increase in HeLa cell toxicity. Thus, a compromise between the antimicrobial activities and cytotoxicities, for optimal efficacy of amphiphilic kanamycins may contain chain lengths between C8 and C12. Finally, the described synthetic protocol also allows the preparation of a fluorescent amphiphilic kanamycin selective toward fungi.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Kanamicina/farmacología , Tensoactivos/farmacología , Antibacterianos/química , Antibacterianos/economía , Antifúngicos/química , Antifúngicos/economía , Supervivencia Celular/efectos de los fármacos , Análisis Costo-Beneficio , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Kanamicina/química , Kanamicina/economía , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tensoactivos/química , Tensoactivos/economía
8.
Molecules ; 24(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100822

RESUMEN

Amphiphilic kanamycins derived from the classic antibiotic kanamycin have attracted interest due to their novel bioactivities beyond inhibition of bacteria. In this study, the recently described 4″,6″-diaryl amphiphilic kanamycins reported as inhibitors of connexin were examined for their antifungal activities. Nearly all 4″,6″-diaryl amphiphilic kanamycins tested had antifungal activities comparable to those of 4″,6″-dialkyl amphiphilic kanamycins, reported previously against several fungal strains. The minimal growth inhibitory concentrations (MICs) correlated with the degree of amphiphilicity (cLogD) of the di-substituted amphiphilic kanamycins. Using the fluorogenic dyes, SYTOXTM Green and propidium iodide, the most active compounds at the corresponding MICs or at 2×MICs caused biphasic dye fluorescence increases over time with intact cells. Further lowering the concentrations to half MICs caused first-order dye fluorescence increases. Interestingly, 4×MIC or 8×MIC levels resulted in fluorescence suppression that did not correlate with the MIC and plasma membrane permeabilization. The results show that 4″,6″-diaryl amphiphilic kanamycins are antifungal and that amphiphilicity parameter cLogD is useful for the design of the most membrane-active versions. A cautionary limitation of fluorescence suppression was revealed when using fluorogenic dyes to measure cell-permeation mechanisms with these antifungals at high concentrations. Finally, 4″,6″-diaryl amphiphilic kanamycins elevate the production of cellular reactive oxygen species as other reported amphiphilic kanamycins.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Kanamicina/química , Kanamicina/farmacología , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
9.
ACS Infect Dis ; 5(3): 473-483, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30674192

RESUMEN

Amphiphilic aminoglycosides have attracted interest due to their novel antifungal activities. A crucial but often neglected factor for drug development in academia is cost of production. Herein is reported a one-step, inexpensive synthesis of amphiphilic alkyl kanamycins constituted with only natural components. The synthetic methodology also enabled the preparation of a series fluorescent amphiphilic aryl kanamycins for direct structure-activity mode of action studies. The lead compounds showed prominent antifungal activities against a panel of fungi, including Fusarium graminearum, Cryptococcus neoformans, and several Candida sp., and also significant antibacterial activities. With fluorescence-based whole cell assays, the aryl amphiphilic kanamycins were observed to permeabilize fungal surface membranes at faster rates than bacterial surface membranes. Also, the antifungal action of the amphiphilic kanamycins was observed to occur in a biphasic mode with an initial fast phase correlated with rapid membrane permeabilization at subminimal inhibitory concentrations and a slower phase membrane permeabilization that elevates the reactive oxygen species production leading to cell death. Inactive hydrophobic amphiphilic kanamycins displayed no membrane permeabilization. The results offer cost-effective methods for producing amphiphilic kanamycins and reveal insights into how nonfungal specific amphiphilic kanamycins can be employed for fungal specific diagnostic and therapeutic applications.


Asunto(s)
Antifúngicos/síntesis química , Antifúngicos/farmacología , Técnicas de Química Sintética/métodos , Kanamicina/síntesis química , Kanamicina/farmacología , Antifúngicos/química , Antifúngicos/economía , Candida/efectos de los fármacos , Candida/metabolismo , Técnicas de Química Sintética/economía , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Fluorescencia , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Kanamicina/química , Kanamicina/economía , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo
10.
Medchemcomm ; 9(6): 909-919, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108980

RESUMEN

Classical aminoglycoside antibiotics are obsolete or hampered by the emergence of drug resistant bacteria. Recent discoveries of antifungal amphiphilic kanamycins offer new strategies for reviving and repurposing these old drugs. A simple structural modification turns the clinically obsolete antibacterial kanamycin into an antifungal agent. Structure-activity relationship studies have led to the production of K20, an antifungal kanamycin that can be mass-produced for uses in agriculture as well as in animals. This review delineates the path to the discovery of K20 and other related antifungal amphiphilic kanamycins, determination of its mode of action, and findings in greenhouse and field trials with K20 that could lead to crop disease protection strategies.

11.
Bioorg Med Chem Lett ; 28(18): 3034-3037, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30093296

RESUMEN

Phosphonates, azoles and quinones are pharmacophores found in bioactive compounds. A series of phosphonates conjugated to azoles and quinones with variable carbon chain lengths were synthesized in 3-4 steps with good yield. Antifungal assay of these compounds showed that ethyl protected phosphates have excellent inhibitory activity against phytopathogenic fungus Fusarium graminearum, and the free-base phosphates have good activity against human pathogenic fungi Aspergillus flavus and Candida albicans. Structure- activity relationship (SAR) studies showed activity increases with longer carbon chain length between phosphonate and anthraquinone analogs consisting of azole and quinone moieties. These newly synthesized compounds also have mild antibacterial activities to Gram positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Cytotoxicity analysis of these compounds against HeLa cells reveals that the phosphoric acid analogs are less toxic compared to ethyl protected phosphonates. Three leads compounds have been identified with prominent antifungal activity and low cytotoxicity.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Azoles/farmacología , Organofosfonatos/farmacología , Quinonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Aspergillus flavus/efectos de los fármacos , Azoles/química , Candida albicans/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fusarium/efectos de los fármacos , Células HeLa , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Organofosfonatos/química , Quinonas/química , Relación Estructura-Actividad
12.
Fungal Biol ; 122(6): 386-399, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29801782

RESUMEN

The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.


Asunto(s)
Hongos/fisiología , Hongos/patogenicidad , Estrés Fisiológico , Brasil , Microbiología Ambiental , Microbiología Industrial , Micología
13.
Fungal Biol ; 122(6): 465-470, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29801790

RESUMEN

K20 is a novel amphiphilic aminoglycoside capable of inhibiting many fungal species. K20's capabilities to inhibit Fusarium graminearum the causal agent wheat Fusarium head blight (FHB) and to this disease were examined. K20 inhibited the growth of F. graminearum (minimum inhibitory concentrations, 7.8-15.6 mg L-1) and exhibited synergistic activity when combined with triazole and strobilurin fungicides. Application of K20 up to 720 mg L-1 to wheat heads in the greenhouse showed no phytotoxic effects. Spraying wheat heads in the greenhouse with K20 alone at 360 mg L-1 lowered FHB severity below controls while combining K20 with half-label rates of Headline (pyraclostrobin) improved its disease control efficacy. In field trials, spraying K20 at 180 mg L-1 and 360 mg L-1 combined with half-label rates of Headline, Proline 480 SC (prothioconazole), Prosaro 421 SC (prothioconazole + tebuconazole), and Caramba (metconazole) reduced FHB indices synergistically. In addition, the K20 plus Proline 480 SC combination reduced levels of the mycotoxin deoxinivalenol by 75 % compared to the control. These data suggest that K20 may be useful as a fungicide against plant diseases such as FHB particularly when combined with commercial fungicides applied at below recommended rates.


Asunto(s)
Aminoglicósidos/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Estrobilurinas/efectos adversos , Triticum/microbiología , Pruebas de Sensibilidad Microbiana
14.
Bioorg Med Chem ; 26(3): 765-774, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29305296

RESUMEN

Carbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Candida albicans, Cryptococcus neoformans, Aspergillus flavus and Fusarium graminearum. Unlike prior studies on carbohydrate esters that focus only on antibacterial applications, our compounds are found to be active against both bacteria and fungi. Furthermore, the synthetic methodology is suitable to scale-up production for a variety of acylated carbohydrates. The identified lead compound, MAN014, can be used as an antimicrobial in applications such as food processing and preservation and for treatment of bacterial and fungal diseases in animals and plants.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Bacterias/efectos de los fármacos , Carbohidratos/química , Ésteres/química , Hongos/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Antifúngicos/farmacología , Antifúngicos/toxicidad , Candida albicans/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ésteres/farmacología , Ésteres/toxicidad , Fusarium/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
15.
Eur J Med Chem ; 126: 696-704, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27951483

RESUMEN

A series of synthetic dimeric cationic anthraquinone analogs (CAAs) with potent antimicrobial activities against a broad range of fungi and bacteria were developed. These compounds were prepared in 2-3 steps with high overall yield and possess alkyl chain, azole, quinone, and quaternary ammonium complexes (QACs). In vitro biological evaluations reveal prominent inhibitory activities of lead compounds against several drug-susceptible and drug-resistant fungal and bacterial strains, including MRSA, VRE, Candida albicans and Aspergillus flavus. Mode of action investigation reveals that the synthesized dimeric CAA's can disrupt the membrane integrity of fungi. Computational studies reveal possible designs that can revive the activity of QACs against drug-resistant bacteria. Cytotoxicity assays in SKOV-3, a cancer cell line, show that the lead compounds are selectively toxic to fungi and bacteria over human cells.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Tensoactivos/síntesis química , Triazoles/síntesis química , Antibacterianos/farmacología , Antifúngicos/farmacología , Azoles , Benzoquinonas/química , Línea Celular Tumoral , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Sensibilidad y Especificidad , Tensoactivos/farmacología , Triazoles/farmacología
16.
J Org Chem ; 81(22): 10651-10663, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27715046

RESUMEN

A concise and novel method for site-selective alkylation of 1,3,6',3″-tetraazidokanamycin has been developed that leads to the divergent synthesis of three classes of kanamycin A derivatives. These new amphiphilic kanamycin derivatives bearing alkyl chains length of 4, 6, 7, 8, 9, 10, 12, 14, and 16 have been tested for their antibacterial and antifungal activities. The antibacterial effect of the synthesized kanamycin derivatives declines or disappears as compared to the original kanamycin A. Several compounds, especially those with octyl chain at O-4″ and/or O-6″ positions on the ring III of kanamycin A, show very strong activity as antifungal agents. In addition, these compounds display no toxicity toward mammalian cells. Finally, computational calculation has revealed possible factors that are responsible for the observed regioselectivity. The simplicity in chemical synthesis and the fungal specific property make the lead compounds ideal candidates for the development of novel antifungal agents.


Asunto(s)
Antifúngicos/química , Kanamicina/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergillus flavus/efectos de los fármacos , Conformación de Carbohidratos , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13 , Escherichia coli/efectos de los fármacos , Fusarium/efectos de los fármacos , Kanamicina/química , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/efectos de los fármacos
17.
Med Mycol ; 53(8): 837-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260746

RESUMEN

Several azoles are widely used to treat human fungal infections. Increasing resistance to these azoles has prompted exploration of their synergistic antifungal activities when combined with other agents. The amphiphilic aminoglycoside, K20, was recently shown to inhibit filamentous fungi, yeasts and heterokonts, but not bacteria. In this study, in vitro synergistic growth inhibition by combinations of K20 and azoles (fluconazole, itraconazole, voriconazole, clotrimazole, or posaconazole) were examined against Candida species and Cryptococcus neoformans. Checkerboard microbroth dilution, time-kill curve, and disk diffusion assays revealed that K20 has synergistic inhibitory activities with all five azoles against C. albicans including azole-resistant C. albicans strains ATCC 64124 and ATCC 10231. Four (fluconazole, itraconazole, clotrimazole, posaconazole) and three (fluconazole, itraconazole, voriconazole) azoles were synergistically inhibitory with K20 against C. lusitaniae and C. tropicalis, respectively. Only posaconazole showed synergy with K20 against two Cryptococcus neoformans strains (90-26 and VR-54). Time-kill curves with azole-resistant C. albicans 64124 and azole-sensitive C. albicans MYA-2876 confirmed the K20-azole synergistic interactions with a ≥ 2 log10 decrease in colony-forming units (CFU)/ml compared with the corresponding azoles alone. These results suggest that combinations of K20 and azoles offer a possible strategy for developing therapies against candidiasis.


Asunto(s)
Aminoglicósidos/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Candida/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Sinergismo Farmacológico , Candida/crecimiento & desarrollo , Cryptococcus neoformans/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana
18.
J Org Chem ; 80(9): 4398-411, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25826012

RESUMEN

Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03's antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Kanamicina/química , Tensoactivos/síntesis química , Antibacterianos/química , Antifúngicos/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Descubrimiento de Drogas , Datos de Secuencia Molecular , Relación Estructura-Actividad , Tensoactivos/química
19.
Bioorg Med Chem Lett ; 25(6): 1288-91, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25677666

RESUMEN

Pradimicins are antifungal and antiviral natural products from Actinomadura hibisca P157-2. The sugar moieties play a critical role in the biological activities of these compounds. There are two glycosyltransferase genes in the pradimicin biosynthetic gene cluster, pdmS and pdmQ, which are putatively responsible for the introduction of the sugar moieties during pradimicin biosynthesis. In this study, we disrupted these two genes using a double crossover approach. Disruption of pdmS led to the production of pradimicinone I, the aglycon of pradimicin A, which confirmed that PdmS is the O-glycosyltransferase responsible for the first glycosylation step and attaching the 4',6'-dideoxy-4'-amino-d-galactose or 4',6'-dideoxy-4'-methylamino-d-galactose moiety to the 5-OH. Disruption of pdmQ resulted in the production of pradimicin B, indicating that this enzyme is the second glycosyltransferase that introduces the d-xylose moiety to the 3'-OH of the first sugar moiety. Insertion of an integrative plasmid before pdmO might have interfered with the dedicated promoter, yielding a mutant that produces pradimicin C as the major metabolite, which suggested that PdmO is the enzyme that specifically methylates the 4'-NH2 of the 4',6'-dideoxy-4'-amino-d-galactose moiety. Functional characterization of these sugar-decorating and -incorporating enzymes thus facilitates the understanding of the pradimicin biosynthetic pathway.


Asunto(s)
Antraciclinas/metabolismo , Actinobacteria/química , Actinobacteria/enzimología , Actinobacteria/metabolismo , Antraciclinas/química , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Metilación , Mutación , Recombinación Genética
20.
Front Microbiol ; 5: 671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25538692

RESUMEN

K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20's antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20-25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30-80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA