Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39101535

RESUMEN

Electron dynamics of the Na10 chain and the Na10-N2 complex locally excited by an atomistic optical near-field are investigated using real-time time-dependent density functional theory calculations on real-space grids. Ultrafast laser pulses were used to simulate the near-field excitation under on- and off-resonance conditions. Off-resonance excitation did not lead to the propagation of the excitation through the Na10 chain. In contrast, under the resonance conditions, the excited state is delocalized over the entire Na chain. Analysis of the local dipole moment of each atom in Na10 indicates that this behavior is consistent with the transition density. Adding an N2 molecule to the opposite end of the local excitation region results in energy transfer via the Na10 chain. The energy transfer efficiency of the N2 molecule is well correlated with the absorption spectrum of Na10. The present study paves the way for realizing remote excitation and photonic devices at the atomic scale.

2.
J Am Chem Soc ; 146(34): 23825-23830, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39021088

RESUMEN

Recent advent of diverse chemical entities necessitates a re-evaluation of chemical bond concepts, underscoring the importance of experimental evidence. Our prior study introduced a general methodology, termed Core Differential Fourier Synthesis (CDFS), for mapping the distribution of valence electron density (VED) in crystalline substances within real space. In this study, we directly compare the VED distributions obtained through CDFS with those derived from high-accuracy theoretical calculation using long-range corrected density functional theory, which quantitatively reproduces accurate orbital energies. This comparison serves to demonstrate the precision of the CDFS in replicating complex details. The VED patterns observed experimentally exhibited detailed structures and phases of wave functions indicative of sp3 hybrid orbitals, closely aligning with theoretical predictions. This alignment underscores the utility of our approach in gathering quantum chemical data experimentally, a crucial step for discussing the chemical properties, such as reaction mechanisms.

3.
J Phys Chem Lett ; 15(25): 6676-6684, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38899775

RESUMEN

Triplet generations in heavy atom-free organic molecules are primarily revealed to proceed through singlet fissions (SFs) by investigating the contributions of SFs and intersystem crossings to the generation rates. The spin-flip long-range corrected time-dependent density functional theory calculations on 11 organic molecules known for triplet generation under photoirradiation are performed. The correlation between the descriptors for SF and the experimental singlet-to-triplet conversion rates strongly supports the predominance of SF progressions in all these molecules, corroborated by experimental observations of their triplet-triplet annihilations. Based on these findings, we propose updated conditions for SF progression: There is a high-absorption singlet state just above the triplet-triplet excitation of the chromophore dimer, or the singlet (triplet-triplet) excitation itself is responsible for photoabsorption. To the best of our knowledge, all organic molecules known for rapid triplet state generation fulfill these conditions.

4.
Angew Chem Int Ed Engl ; 63(34): e202405584, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38797714

RESUMEN

Large dissymmetry factor of the circularly polarized luminescence (gCPL) was observed in ligand and coordination tuned chiral tetrakis europium (Eu(III)) complexes with ammonium cations. The gCPL value was estimated to be -1.54, which is the largest among chiral luminescent molecules. Through photophysical measurements, single crystal X-ray structural analyses and quantum chemical calculations, changes in the geometric and electronic structures were observed for a series of chiral tetrakis Eu(III) complexes which enhanced the gCPL value. The emission quantum yield and photosensitized energy transfer efficiencies of chiral Eu(III) complexes with ammonium cations were also larger than those of chiral Eu(III) complex with Cs+. Based on the systematic modifications and analyses for chiral tetrakis Eu(III) complex, effect of the ammonium cation on enhanced CPL brightness is reported.

5.
Phys Chem Chem Phys ; 26(21): 15672-15680, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38766713

RESUMEN

In this study, we have advanced the field of light-driven molecular rotary motors (LDMRMs) by achieving two pivotal goals: lowering the thermal helix inversion (THI) barrier and extending the absorption wavelength into the visible spectrum. This study involves the structural reengineering of a second-generation visible LDMRM, resulting in the synthesis of a novel class, specifically, 2-((2S)-5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-yl)-3-oxo-2,3-dihydro-1H-dibenzo[e,g]indole-6,9-dicarbonitrile. This redesigned motor stands out with its two photoisomerization stages and two thermal helix inversions, featuring exceptionally low THI barriers (4.00 and 2.05 kcal mol-1 at the OM2/MRCI level for the EM → EP and ZM → ZP processes, respectively). Moreover, it displays absorption wavelengths in the visible light range (482.98 and 465.76 nm for the EP and ZP isomers, respectively, at the TD-PBE0-D3/6-31G(d,p) level), surpassing its predecessors in efficiency, as indicated by the narrow HOMO-LUMO energy gap. Ultrafast photoisomerization kinetics (approximately 0.8-1.6 ps) and high quantum yields (around 0.3-0.6) were observed through trajectory surface hopping simulations. Additionally, the simulated time-resolved fluorescence emission spectrum indicates a significantly reduced "dark state" duration (0.09-0.26 ps) in these newly designed LDMRMs compared to the original ones, marking a substantial leap forward in the design and efficiency of LDMRMs.

6.
Inorg Chem ; 63(22): 10108-10113, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38771149

RESUMEN

Metal-organic cages (MOCs) with luminophores have significant advantages for the facile detection of specific molecules based on turn-on or turn-off luminescence changes induced by host-guest complexation. One important challenge is the development of turn-on-type near-infrared (NIR)-luminescent MOCs. In this study, we synthesized a novel MOC consisting of two porphyrin dyes linked by four Yb(III) complexes, which exhibit bimodal red and NIR fluorescence signals upon photoexcitation of the porphyrin π system. Single-crystal X-ray structural analysis and computational molecular modeling revealed that planar aromatic perfluorocarbons were intercalated into the MOC. The tight packing between the MOC and guests enhanced the NIR fluorescence of Yb(III) by suppressing energy transfer from the photoexcited porphyrin to oxygen molecules. Guest-responsive turn-on NIR fluorescence changes in an MOC were successfully demonstrated.

7.
Proc Natl Acad Sci U S A ; 121(21): e2317781121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38758700

RESUMEN

Complex networks are pervasive in various fields such as chemistry, biology, and sociology. In chemistry, first-order reaction networks are represented by a set of first-order differential equations, which can be constructed from the underlying energy landscape. However, as the number of nodes increases, it becomes more challenging to understand complex kinetics across different timescales. Hence, how to construct an interpretable, coarse-graining scheme that preserves the underlying timescales of overall reactions is of crucial importance. Here, we develop a scheme to capture the underlying hierarchical subsets of nodes, and a series of coarse-grained (reduced-dimensional) rate equations between the subsets as a function of time resolution from the original reaction network. Each of the coarse-grained representations guarantees to preserve the underlying slow characteristic timescales in the original network. The crux is the construction of a lumping scheme incorporating a similarity measure in deciphering the underlying timescale hierarchy, which does not rely on the assumption of equilibrium. As an illustrative example, we apply the scheme to four-state Markovian models and Claisen rearrangement of allyl vinyl ether (AVE), and demonstrate that the reduced-dimensional representation accurately reproduces not only the slowest but also the faster timescales of overall reactions although other reduction schemes based on equilibrium assumption well reproduce the slowest timescale but fail to reproduce the second-to-fourth slowest timescales with the same accuracy. Our scheme can be applied not only to the reaction networks but also to networks in other fields, which helps us encompass their hierarchical structures of the complex kinetics over timescales.

8.
Sci Rep ; 14(1): 829, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191637

RESUMEN

The feasibility of singlet fission (SF) in organic photosensitizers is investigated through spin-flip long-range corrected time-dependent density functional theory. This study focuses on four major organic photosensitizer molecules: benzophenone, boron-dipyrromethene, methylene blue, and rose bengal. Calculations demonstrate that all these molecules possess moderate [Formula: see text]-stacking energies and closely-lying singlet (S) and quintet (triplet-triplet, TT) excitations, satisfying the essential conditions for SF: (1) Near-degenerate low-lying S and (TT) excitations with a significant S-T energy gap, and (2) Moderate [Formula: see text]-stacking energy of chromophores, slightly higher than solvation energy, enabling dissociation for triplet-state chromophore generation. Moreover, based on the El-Sayed rule, intersystem crossing is found to simultaneously proceed at very slow rates in all these photosensitizers. This is attributed to the fact that the lowest singlet excitation of the monomers partly involves [Formula: see text] transitions alongside the main [Formula: see text] transitions. The proposed mechanisms are strongly substantiated by comparisons with experimental studies.

9.
Nat Commun ; 15(1): 882, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287031

RESUMEN

Molecular passivation is a prominent approach for improving the performance and operation stability of halide perovskite solar cells (HPSCs). Herein, we reveal discernible effects of diammonium molecules with either an aryl or alkyl core onto Methylammonium-free perovskites. Piperazine dihydriodide (PZDI), characterized by an alkyl core-electron cloud-rich-NH terminal, proves effective in mitigating surface and bulk defects and modifying surface chemistry or interfacial energy band, ultimately leading to improved carrier extraction. Benefiting from superior PZDI passivation, the device achieves an impressive efficiency of 23.17% (area ~1 cm2) (low open circuit voltage deficit ~0.327 V) along with superior operational stability. We achieve a certified efficiency of ~21.47% (area ~1.024 cm2) for inverted HPSC. PZDI strengthens adhesion to the perovskite via -NH2I and Mulliken charge distribution. Device analysis corroborates that stronger bonding interaction attenuates the defect densities and suppresses ion migration. This work underscores the crucial role of bifunctional molecules with stronger surface adsorption in defect mitigation, setting the stage for the design of charge-regulated molecular passivation to enhance the performance and stability of HPSC.

10.
Adv Sci (Weinh) ; 11(12): e2306586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225711

RESUMEN

Caged compounds are frequently used in life science research. However, the light used to activate them is commonly absorbed and scattered by biological materials, limiting their use to basic research in cells or small animals. In contrast, hard X-rays exhibit high bio-permeability due to the difficulty of interacting with biological molecules. With the main goal of developing X-ray activatable caged compounds, azo compounds are designed and synthesized with a positive charge and long π-conjugated system to increase the reaction efficiency with hydrated electrons. The azo bonds in the designed compounds are selectively cleaved by X-ray, and the fluorescent substance Diethyl Rhodamine is released. Based on the results of experiments and quantum chemical calculations, azo bond cleavage is assumed to occur via a two-step process: a two-electron reduction of the azo bond followed by N─N bond cleavage. Cellular experiments also demonstrate that the azo bonds can be cleaved intracellularly. Thus, caged compounds that can be activated by an azo bond cleavage reaction promoted by X-ray are successfully generated.

11.
Nat Chem ; 16(1): 22-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182762

RESUMEN

Trans-cis photoisomerization is generally described by a model in which the reaction proceeds via a common intermediate having a perpendicular conformation around the rotating bond, irrespective of from which isomer the reaction starts. Nevertheless, such an intermediate has yet to be identified unambiguously, and it is often called the 'phantom' state. Here we present the structural identification of the common, perpendicular intermediate of stilbene photoisomerization using ultrafast Raman spectroscopy. Our results reveal ultrafast birth and decay of an identical, short-lived transient that exhibits a vibrational signature characteristic of the perpendicular state upon photoexcitation of the trans and cis forms. In combination with ab initio molecular dynamics simulations, it is shown that the photoexcited trans and cis forms are funnelled off to the ground state through the same, perpendicular intermediate.

12.
J Comput Chem ; 45(9): 552-562, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38009451

RESUMEN

Recently, surface-hopping ab initio molecular dynamics (SH-AIMD) simulations have come to be used to discuss the mechanisms and dynamics of excited-state chemical reactions, including internal conversion and intersystem crossing. In dynamics simulations involving intersystem crossing, there are two potential energy surfaces (PESs) governing the motion of nuclei: PES in a spin-pure state and PES in a spin-mixed state. The former gives wrong results for molecular systems with large spin-orbit coupling (SOC), while the latter requires a potential gradient that includes a change in SOC at each point, making the computational cost very high. In this study, we systematically investigate the extent to which the magnitude of SOC affects the results of the spin-pure state-based dynamics simulations for the hydride MH2 (M = Si, Ge, Sn, Pb) by performing SH-AIMD simulations based on spin-pure and spin-mixed states. It is clearly shown that spin-mixed state PESs are indispensable for the dynamics simulation of intersystem crossing in systems containing elements Sn and Pb from the fifth period onward. Furthermore, in addition to the widely used Tully's fewest switches (TFS) algorithm, the Zhu-Nakamura (ZN) global switching algorithm, which is computationally less expensive, is applied to SH for comparison. The results from TFS- and ZN-SH-AIMD methods are in qualitative agreement, suggesting that the less expensive ZN-SH-AIMD can be successfully utilized to investigate the dynamics of photochemical reactions based on quantum chemical calculations.

13.
ACS Nano ; 17(23): 24355-24362, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38047624

RESUMEN

A metal-metal bond between coordination complexes has the nature of a covalent bond in hydrocarbons. While bimetallic and trimetallic compounds usually have three-dimensional structures in solution, the high directionality and robustness of the bond can be applied for on-surface syntheses. Here, we present a systematic formation of complex organometallic oligomers on Cu(111) through sequential ring opening of 11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane and bonding of phenanthroline derivatives by multiple Cu atoms. A detailed characterization with a combination of scanning tunneling microscopy and density functional theory calculations revealed the role of the Cu adatoms in both enantiomers of the chiral oligomers. Furthermore, we found sufficient strength of the bonds against sliding friction by manipulating the oligomers up to a hexamer. This finding may help to increase the variety of organometallic nanostructures on surfaces.

14.
J Am Chem Soc ; 145(50): 27512-27520, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38060534

RESUMEN

We report that a newly developed type of triaryltriazine rotor, which bears bulky silyl moieties on the para position of its peripheral phenylene groups, forms a columnar stacked clutch structure in the crystalline phase. The phenylene units of the crystalline rotors display two different and interconvertible correlated molecular motions. It is possible to switch between these intermolecular geared rotational motions via a thermally induced crystal-to-crystal phase transition. Variable-temperature solid-state 2H NMR measurements and X-ray diffraction studies revealed that the crystalline rotor is characterized by a vertically stacked columnar structure upon introducing a bulky Si moiety with bent geometry as the stator. The structure exhibits correlated flapping motions via a combination of 85° and ca. 95° rotations between 295 and 348 K, concurrent with a negative entropy change (ΔS‡ = -23 ± 0.3 cal mol-1 K-1). Interestingly, heating the crystal beyond 348 K induces an anisotropic expansion of the column and lowers the steric congestion between the adjacent rotators, thus altering the correlated motions from a flapping motion to a correlated 2-fold 180° rotation with a lower entropic penalty (ΔS‡ = -14 ± 0.5 cal mol-1 K-1). The obtained results of our study suggest that the intermolecular stacking of the C3-symmetric rotator driven by the steric repulsion of the bulky stator represents a promising strategy for producing various correlated molecular motions in the crystalline phase. Moreover, direct and reversible modulation of the intermolecularly correlated rotation is achieved via a thermally induced crystal-to-crystal phase transition, which operates as a gearshift function at the molecular level.

15.
J Phys Chem Lett ; 14(51): 11587-11596, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38100084

RESUMEN

The roles of singlet fission in the triplet generation of silicon phthalocyanine (SiPc), a compound analogous to the IRDye700DX photosensitizer used in near-infrared photoimmunotherapy, are investigated by considering the energetical relation between the excitations of this compound. These excitations are obtained through spin-flip long-range corrected time-dependent density functional theory calculations. To initiate singlet fission, chromophores must meet two conditions: (1) near-degenerate low-lying singlet and quintet (triplet-triplet) excitations with a considerable energy gap of the lowest singlet and triplet excited states and (2) moderate π-stacking energy of chromophores, which is higher than but not far from the solvation energy, to facilitate the dissociation and generation of triplet-state chromophores. The present calculations demonstrate that SiPc satisfies both of these conditions after the formation of π-stacking irrespective of the presence of an axial ligand(s), suggesting that singlet fission plays a crucial role in the triplet generation process, although intersystem crossing occurs simultaneously at a very slow rate.

16.
J Comput Chem ; 44(31): 2391-2403, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37658482

RESUMEN

Total and orbital electron densities of molecules are explored for the effect of the long-range correction (LC) for density functional theory (DFT) exchange functionals by comparing to the effect of the ab initio coupled cluster singles and doubles (CCSD) method. Calculating the LC effect on the total electron densities shows that the LC stabilizes the electrons around the long-range interaction regions of kinetic energy density, which are assumed to be electrons other than free electrons and self-interacting electrons, while the CCSD method stabilizes the electrons in the long-range interaction regions in the vertical molecular planes. As a more precise test, the LC effect on orbital densities are compared to the CCSD effect on Dyson orbital densities. Surprisingly, these effects are similar for the unoccupied orbitals, indicating that the LC covers the effects required to reproduce the CCSD Dyson unoccupied orbitals. For exploring the discrepancies between these effects on the occupied orbitals, the photoionization cross sections are calculated as a direct test for the shapes of the HOMOs to investigate the differences between these effects on the occupied orbitals. Consequently, the LC clearly produces the canonical HOMOs close to the CCSD Dyson and experimental ones, except for the HOMO of benzene molecule that mixes with the HOMO - 1 for the CCSD Dyson orbitals. This indicates that the orbital analyses using the photoionization cross sections are available as a direct test for the quality of DFT functionals.

17.
J Chem Theory Comput ; 19(17): 5886-5896, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37642714

RESUMEN

This study develops an algorithm to reproduce reaction route maps (RRMs) in the shape space from the outputs of potential search algorithms. To demonstrate the algorithm, global reaction route mapping is utilized as a potential search algorithm, but the proposed algorithm should work with other potential search algorithms in principle. The proposed algorithm does not require any encoding of the molecular configurations and is thus applicable to complicated realistic molecules for which efficient encoding is not readily available. We show that subgraphs of an RRM mapped to each other by the action of the symmetry group are isomorphic and also provide an algorithm to compute the set of feasible transformations in the sense of Longuet-Higgins. We demonstrate the proposed algorithm in toy models and in more realistic molecules. Finally, we remark on absolute rate theory from our perspective.

18.
J Chem Theory Comput ; 19(15): 5007-5023, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37395411

RESUMEN

A reaction route map (RRM) constructed using the GRRM program is a collection of elementary reaction pathways, each of which comprises two equilibrium (EQ) geometries and one transition state (TS) geometry connected by an intrinsic reaction coordinate (IRC). An RRM can be mathematically represented by a graph with weights assigned to both vertices, corresponding to EQs, and edges, corresponding to TSs, representing the corresponding energies. In this study, we propose a method to extract topological descriptors of a weighted graph representing an RRM based on persistent homology (PH). The work of Mirth et al. [ J. Chem. Phys. 2021, 154, 114114], in which PH analysis was applied to the (3N - 6)-dimensional potential energy surface of an N atomic system, is related to the present method, but our method is practically applicable to realistic molecular reactions. Numerical assessments revealed that our method can extract the same information as the method proposed by Mirth et al. for the 0-th and 1-st PHs, except for the death of the 1-st PH. In addition, the information obtained from the 0-th PH corresponds to the analysis using the disconnectivity graph. The results of this study suggest that the descriptors obtained using the proposed method accurately reflect the characteristics of the chemical reactions and/or physicochemical properties of the system.

19.
Nat Commun ; 14(1): 3926, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400448

RESUMEN

The catalytic combustion of methane at a low temperature is becoming increasingly key to controlling unburned CH4 emissions from natural gas vehicles and power plants, although the low activity of benchmark platinum-group-metal catalysts hinders its broad application. Based on automated reaction route mapping, we explore main-group elements catalysts containing Si and Al for low-temperature CH4 combustion with ozone. Computational screening of the active site predicts that strong Brønsted acid sites are promising for methane combustion. We experimentally demonstrate that catalysts containing strong Bronsted acid sites exhibit improved CH4 conversion at 250 °C, correlating with the theoretical predictions. The main-group catalyst (proton-type beta zeolite) delivered a reaction rate that is 442 times higher than that of a benchmark catalyst (5 wt% Pd-loaded Al2O3) at 190 °C and exhibits higher tolerance to steam and SO2. Our strategy demonstrates the rational design of earth-abundant catalysts based on automated reaction route mapping.

20.
Chemistry ; 29(52): e202301673, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37367483

RESUMEN

As a dimetal-binding rigid scaffold, 2-(pyridin-2-yl)imidazo[1,5-b]pyridazine-7-ylidene was introduced. The scaffold was first converted into a meridional Au,N,N-tridentate ligand through binding of a Au(I)Cl moiety at the carbene center. The Au(I) center and the N,N-chelating moiety were expected to function as metallophilic and 4e-σ-donative interaction sites, respectively, in the binding of the second metal center. In this manner, various trinuclear heterobimetallic complexes were synthesized with different 3d-metal sources, such as cationic CuI , CuII , NiII , and CoII salts. SC-XRD analysis showed that the mono-3d-metal di-gold(I) trinuclear heterobimetallic complexes were constructed through gold(I)-metal interactions. Metallophilic interactions were also investigated by quantum chemical calculations including the AIM and IGMH methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...