Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 37(10): 1158-1169, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39120521

RESUMEN

The central dogma of molecular biology can be conceptualised as the division of labour between templates and catalysts, where templates transmit genetic information, catalysts accelerate chemical reactions, and the information flows from templates to catalysts but not from catalysts to templates. How can template-catalyst division evolve in primordial replicating systems? A previous study has shown that even if the template-catalyst division does not provide an immediate fitness benefit, it can evolve through symmetry breaking between replicating molecules when the molecules are compartmentalised into protocells. However, cellular compartmentalisation may have been absent in primordial replicating systems. Here, we investigate whether cellular compartmentalisation is necessary for the evolution of the template-catalyst division via symmetry breaking using an individual-based model of replicators in a two-dimensional space. Our results show that replicators evolve the template-catalyst division via symmetry breaking when their diffusion constant is sufficiently high, a condition that results in low genetic relatedness between replicators. The evolution of the template-catalyst division reduces the risk of invasion by "cheaters," replicators that have no catalytic activities, encode no catalysts, but replicate to the detriment of local population growth. Our results suggest that the evolution of the template-catalyst division via symmetry breaking does not require cellular compartmentalization and is, instead, a general phenomenon in replicators with structured populations.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Catálisis , Modelos Genéticos
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366199

RESUMEN

Duplication is a major route for the emergence of new gene functions. However, the emergence of new gene functions via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence. A further pressure contributing to gene loss occurs under Black Queen dynamics, as cheaters that lose the capacity to produce a public good can instead acquire it from neighbouring producers. We propose that Black Queen dynamics can favour the emergence of new function because, under an emerging Black Queen dynamic, there is high gene redundancy spread across a community of interacting cells. Using computational modelling, we demonstrate that new gene functions can emerge under Black Queen dynamics. This result holds even if there is deletion bias due to low duplication rates and selection against redundant gene copies resulting from the high cost associated with carrying a locus. However, when the public good production costs are high, Black Queen dynamics impede the fixation of new functions. Our results expand the mechanisms by which new gene functions can emerge in prokaryotic systems.


Asunto(s)
Familia de Multigenes , Células Procariotas , Evolución Molecular
3.
Phage (New Rochelle) ; 4(2): 68-81, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350994

RESUMEN

Background: Bacteriophages are becoming increasingly important in the race to find alternatives to antibiotics. Unfortunately, bacteriophages that might otherwise be useful are sometimes discarded due to low titers making them unsuitable for downstream applications. Methods: Here, we present two distinct approaches used to experimentally evolve novel New Zealand Paenibacillus larvae bacteriophages. The first approach uses the traditional agar-overlay method, whereas the other was a 96-well plate liquid infection protocol that improved phage titers in as little as four days. We also used a mathematical model to probe the parameters and limits of the RAMP-UP approach to rapidly select mutants that improve bacteriophage titers. Results: Both experimental approaches resulted in an increase in plaque-forming units (PFU/mL). The liquid infection approach developed here, which we call RAMP-UP for Rapid Adaptive Mutation of Phage - UP, was significantly faster and simpler, and allowed us to evolve high titer bacteriophages in as little as four days. Titers were increased from 100-100,000-fold relative to their ancestors. The resultant titers were sufficient to extract and sequence DNA from these bacteriophages. An analysis of these phage genomes is provided. Conclusion: The RAMP-UP protocol is an effective method for experimentally evolving previously intractable bacteriophages in a high-throughput and expeditious manner.

4.
Proc Biol Sci ; 290(2001): 20231088, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37339743

RESUMEN

Mobile genetic elements (MGEs), such as phages and plasmids, often possess accessory genes encoding bacterial functions, facilitating bacterial evolution. Are there rules governing the arsenal of accessory genes MGEs carry? If such rules exist, they might be reflected in the types of accessory genes different MGEs carry. To test this hypothesis, we compare prophages and plasmids with respect to the frequencies at which they carry antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in the genomes of 21 pathogenic bacterial species using public databases. Our results indicate that prophages tend to carry VFGs more frequently than ARGs in three species, whereas plasmids tend to carry ARGs more frequently than VFGs in nine species, relative to genomic backgrounds. In Escherichia coli, where this prophage-plasmid disparity is detected, prophage-borne VFGs encode a much narrower range of functions than do plasmid-borne VFGs, typically involved in damaging host cells or modulating host immunity. In the species where the above disparity is not detected, ARGs and VFGs are barely found in prophages and plasmids. These results indicate that MGEs can differentiate in the types of accessory genes they carry depending on their infection strategies, suggesting a rule governing horizontal gene transfer mediated by MGEs.


Asunto(s)
Bacteriófagos , Profagos , Profagos/genética , Plásmidos , Escherichia coli/genética , Factores de Virulencia/genética , Antibacterianos
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200477, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34839699

RESUMEN

Eukaryotes and prokaryotes have distinct genome architectures, with marked differences in genome size, the ratio of coding/non-coding DNA, and the abundance of transposable elements (TEs). As TEs replicate independently of their hosts, the proliferation of TEs is thought to have driven genome expansion in eukaryotes. However, prokaryotes also have TEs in intergenic spaces, so why do prokaryotes have small, streamlined genomes? Using an in silico model describing the genomes of single-celled asexual organisms that coevolve with TEs, we show that TEs acquired from the environment by horizontal gene transfer can promote the evolution of genome streamlining. The process depends on local interactions and is underpinned by rock-paper-scissors dynamics in which populations of cells with streamlined genomes beat TEs, which beat non-streamlined genomes, which beat streamlined genomes, in continuous and repeating cycles. Streamlining is maladaptive to individual cells, but improves lineage viability by hindering the proliferation of TEs. Streamlining does not evolve in sexually reproducing populations because recombination partially frees TEs from the deleterious effects they cause. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Eucariontes/genética , Transferencia de Gen Horizontal , Células Procariotas
7.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849893

RESUMEN

Numerous living systems are hierarchically organized, whereby replicating components are grouped into reproducing collectives-e.g., organelles are grouped into cells, and cells are grouped into multicellular organisms. In such systems, evolution can operate at two levels: evolution among collectives, which tends to promote selfless cooperation among components within collectives (called altruism), and evolution within collectives, which tends to promote cheating among components within collectives. The balance between within- and among-collective evolution thus exerts profound impacts on the fitness of these systems. Here, we investigate how this balance depends on the size of a collective (denoted by N) and the mutation rate of components (m) through mathematical analyses and computer simulations of multiple population genetics models. We first confirm a previous result that increasing N or m accelerates within-collective evolution relative to among-collective evolution, thus promoting the evolution of cheating. Moreover, we show that when within- and among-collective evolution exactly balance each other out, the following scaling relation generally holds: Nmα is a constant, where scaling exponent α depends on multiple parameters, such as the strength of selection and whether altruism is a binary or quantitative trait. This relation indicates that although N and m have quantitatively distinct impacts on the balance between within- and among-collective evolution, their impacts become identical if m is scaled with a proper exponent. Our results thus provide a novel insight into conditions under which cheating or altruism evolves in hierarchically organized replicating systems.


Asunto(s)
Altruismo , Evolución Biológica , Simulación por Computador , Genética de Población , Fenotipo , Selección Genética
8.
Elife ; 92020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32432548

RESUMEN

Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.


Most animals, including humans, inherit genes from their parents. However, bacteria and other microorganisms can also acquire genes from members of the same generation. This process, called horizontal gene transfer (HGT for short), allows bacteria to quickly adapt to new environments. For example, rather than waiting for rare mutations to arise, bacteria can pick up 'tried and true' genes from their neighbours which allow them to exploit new resources or become resistant to antibiotics. But gene sharing comes at a cost. For instance, taking up DNA is an energetically costly process and exposes bacteria to so-called selfish genes which replicate at the expense of other more useful genes in the genome. Given the costs and the threat of selfish genes, it remained unclear whether HGT is still beneficial in a stable environment where no new resources or antibiotics are present. Here, van Dijk et al. used mathematical modelling to examine how gene sharing affects the growth rate of bacterial colonies living in a stable environment. The experiments showed that bacteria are able to take up new sequences of DNA even in the presence of selfish genes. This allows communities of bacteria to retain genes that provide a small benefit that would otherwise be lost from the population, even when taking up DNA imposes a cost upon the individual. van Dijk et al. found that this collective behaviour cannot evolve in well-mixed bacterial populations, but readily emerged in more structured populations, such as biofilms. This work demonstrates how HGT, a key component of bacterial evolution, has allowed bacteria to coexist with harmful selfish genes. It also provides insights into how genes persist and spread through bacterial communities, which has implications for our understanding of antibiotic resistance.


Asunto(s)
Bacterias/genética , ADN Bacteriano/genética , Evolución Molecular , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal
9.
Proc Biol Sci ; 286(1912): 20191359, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31575361

RESUMEN

The central dogma of molecular biology rests on two kinds of asymmetry between genomes and enzymes: informatic asymmetry, where information flows from genomes to enzymes but not from enzymes to genomes; and catalytic asymmetry, where enzymes provide chemical catalysis but genomes do not. How did these asymmetries originate? Here, we show that these asymmetries can spontaneously arise from conflict between selection at the molecular level and selection at the cellular level. We developed a model consisting of a population of protocells, each containing a population of replicating catalytic molecules. The molecules are assumed to face a trade-off between serving as catalysts and serving as templates. This trade-off causes conflicting multilevel selection: serving as catalysts is favoured by selection between protocells, whereas serving as templates is favoured by selection between molecules within protocells. This conflict induces informatic and catalytic symmetry breaking, whereby the molecules differentiate into genomes and enzymes, establishing the central dogma. We show mathematically that the symmetry breaking is caused by a positive feedback between Fisher's reproductive values and the relative impact of selection at different levels. This feedback induces a division of labour between genomes and enzymes, provided variation at the molecular level is sufficiently large relative to variation at the cellular level, a condition that is expected to hinder the evolution of altruism. Taken together, our results suggest that the central dogma is a logical consequence of conflicting multilevel selection.


Asunto(s)
Selección Genética , Animales , Evolución Biológica , Genoma , ARN
10.
PLoS Comput Biol ; 15(6): e1007094, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170146

RESUMEN

The emergence of replicases that can replicate themselves is a central issue in the origin of life. Recent experiments suggest that such replicases can be realized if an RNA polymerase ribozyme is divided into fragments short enough to be replicable by the ribozyme and if these fragments self-assemble into a functional ribozyme. However, the continued self-replication of such replicases requires that the production of every essential fragment be balanced and sustained. Here, we use mathematical modeling to investigate whether and under what conditions fragmented replicases achieve continued self-replication. We first show that under a simple batch condition, the replicases fail to display continued self-replication owing to positive feedback inherent in these replicases. This positive feedback inevitably biases replication toward a subset of fragments, so that the replicases eventually fail to sustain the production of all essential fragments. We then show that this inherent instability can be resolved by small rates of random content exchange between loose compartments (i.e., horizontal transfer). In this case, the balanced production of all fragments is achieved through negative frequency-dependent selection operating in the population dynamics of compartments. The horizontal transfer also ensures the presence of all essential fragments in each compartment, sustaining self-replication. Taken together, our results underline compartmentalization and horizontal transfer in the origin of the first self-replicating replicases.


Asunto(s)
Evolución Molecular , ARN Catalítico , ARN Polimerasa Dependiente del ARN , Biología Computacional , Modelos Moleculares , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
11.
PLoS One ; 12(8): e0183120, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809951

RESUMEN

Stronger selection implies faster evolution-that is, the greater the force, the faster the change. This apparently self-evident proposition, however, is derived under the assumption that genetic variation within a population is primarily supplied by mutation (i.e. mutation-driven evolution). Here, we show that this proposition does not actually hold for recombination-driven evolution, i.e. evolution in which genetic variation is primarily created by recombination rather than mutation. By numerically investigating population genetics models of recombination, migration and selection, we demonstrate that stronger selection can slow down evolution on a perfectly smooth fitness landscape. Through simple analytical calculation, this apparently counter-intuitive result is shown to stem from two opposing effects of natural selection on the rate of evolution. On the one hand, natural selection tends to increase the rate of evolution by increasing the fixation probability of fitter genotypes. On the other hand, natural selection tends to decrease the rate of evolution by decreasing the chance of recombination between immigrants and resident individuals. As a consequence of these opposing effects, there is a finite selection pressure maximizing the rate of evolution. Hence, stronger selection can imply slower evolution if genetic variation is primarily supplied by recombination.


Asunto(s)
Modelos Genéticos , Selección Genética/genética , Evolución Molecular , Variación Genética/genética , Genotipo , Recombinación Genética
12.
Nat Commun ; 8(1): 250, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811464

RESUMEN

The heredity of a cell is provided by a small number of non-catalytic templates-the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity.Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.


Asunto(s)
Genoma , Modelos Genéticos , Células Artificiales/química , Catálisis , Evolución Molecular , Flujo Genético
13.
Proc Biol Sci ; 283(1830)2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27147095

RESUMEN

Evolution is often conceived as changes in the properties of a population over generations. Does this notion exhaust the possible dynamics of evolution? Life is hierarchically organized, and evolution can operate at multiple levels with conflicting tendencies. Using a minimal model of such conflicting multilevel evolution, we demonstrate the possibility of a novel mode of evolution that challenges the above notion: individuals ceaselessly modify their genetically inherited phenotype and fitness along their lines of descent, without involving apparent changes in the properties of the population. The model assumes a population of primitive cells (protocells, for short), each containing a population of replicating catalytic molecules. Protocells are selected towards maximizing the catalytic activity of internal molecules, whereas molecules tend to evolve towards minimizing it in order to maximize their relative fitness within a protocell. These conflicting evolutionary tendencies at different levels and genetic drift drive the lineages of protocells to oscillate endlessly between high and low intracellular catalytic activity, i.e. high and low fitness, along their lines of descent. This oscillation, however, occurs independently in different lineages, so that the population as a whole appears stationary. Therefore, ongoing evolution can be hidden behind an apparently stationary population owing to conflicting multilevel evolution.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Dinámica Poblacional
14.
BMC Biol ; 13: 20, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25928466

RESUMEN

BACKGROUND: Fixation of beneficial genes in bacteria and archaea (collectively, prokaryotes) is often believed to erase pre-existing genomic diversity through the hitchhiking effect, a phenomenon known as genome-wide selective sweep. Recent studies, however, indicate that beneficial genes spread through a prokaryotic population via recombination without causing genome-wide selective sweeps. These gene-specific selective sweeps seem to be at odds with the existing estimates of recombination rates in prokaryotes, which appear far too low to explain such phenomena. RESULTS: We use mathematical modeling to investigate potential solutions to this apparent paradox. Most microbes in nature evolve in heterogeneous, dynamic communities, in which ecological interactions can substantially impact evolution. Here, we focus on the effect of negative frequency-dependent selection (NFDS) such as caused by viral predation (kill-the-winner dynamics). The NFDS maintains multiple genotypes within a population, so that a gene beneficial to every individual would have to spread via recombination, hence a gene-specific selective sweep. However, gene loci affected by NFDS often are located in variable regions of microbial genomes that contain genes involved in the mobility of selfish genetic elements, such as integrases or transposases. Thus, the NFDS-affected loci are likely to experience elevated rates of recombination compared with the other loci. Consequently, these loci might be effectively unlinked from the rest of the genome, so that NFDS would be unable to prevent genome-wide selective sweeps. To address this problem, we analyzed population genetic models of selective sweeps in prokaryotes under NFDS. The results indicate that NFDS can cause gene-specific selective sweeps despite the effect of locally elevated recombination rates, provided NFDS affects more than one locus and the basal rate of recombination is sufficiently low. Although these conditions might seem to contradict the intuition that gene-specific selective sweeps require high recombination rates, they actually decrease the effective rate of recombination at loci affected by NFDS relative to the per-locus basal level, so that NFDS can cause gene-specific selective sweeps. CONCLUSION: Because many free-living prokaryotes are likely to evolve under NFDS caused by ubiquitous viruses, gene-specific selective sweeps driven by NFDS are expected to be a major, general phenomenon in prokaryotic populations.


Asunto(s)
Archaea/genética , Bacterias/genética , Genes Arqueales , Genes Bacterianos , Selección Genética , Células Clonales , Simulación por Computador , Interacciones Huésped-Parásitos/genética , Modelos Genéticos , Recombinación Genética
15.
G3 (Bethesda) ; 4(2): 325-39, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24347631

RESUMEN

Horizontal gene transfer (HGT) is a major factor in the evolution of prokaryotes. An intriguing question is whether HGT is maintained during evolution of prokaryotes owing to its adaptive value or is a byproduct of selection driven by other factors such as consumption of extracellular DNA (eDNA) as a nutrient. One hypothesis posits that HGT can restore genes inactivated by mutations and thereby prevent stochastic, irreversible deterioration of genomes in finite populations known as Muller's ratchet. To examine this hypothesis, we developed a population genetic model of prokaryotes undergoing HGT via homologous recombination. Analysis of this model indicates that HGT can prevent the operation of Muller's ratchet even when the source of transferred genes is eDNA that comes from dead cells and on average carries more deleterious mutations than the DNA of recipient live cells. Moreover, if HGT is sufficiently frequent and eDNA diffusion sufficiently rapid, a subdivided population is shown to be more resistant to Muller's ratchet than an undivided population of an equal overall size. Thus, to maintain genomic information in the face of Muller's ratchet, it is more advantageous to partition individuals into multiple subpopulations and let them "cross-reference" each other's genetic information through HGT than to collect all individuals in one population and thereby maximize the efficacy of natural selection. Taken together, the results suggest that HGT could be an important condition for the long-term maintenance of genomic information in prokaryotes through the prevention of Muller's ratchet.


Asunto(s)
Archaea/genética , Bacterias/genética , Transferencia de Gen Horizontal , Modelos Genéticos , Muerte Celular , Recombinación Homóloga
16.
Phys Life Rev ; 9(3): 219-63, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22727399

RESUMEN

We review computational studies on prebiotic evolution, focusing on informatic processes in RNA-like replicator systems. In particular, we consider the following processes: the maintenance of information by replicators with and without interactions, the acquisition of information by replicators having a complex genotype-phenotype map, the generation of information by replicators having a complex genotype-phenotype-interaction map, and the storage of information by replicators serving as dedicated templates. Focusing on these informatic aspects, we review studies on quasi-species, error threshold, RNA-folding genotype-phenotype map, hypercycle, multilevel selection (including spatial self-organization, classical group selection, and compartmentalization), and the origin of DNA-like replicators. In conclusion, we pose a future question for theoretical studies on the origin of life.


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Origen de la Vida , ARN , Secuencia de Bases , Genotipo , Fenotipo , ARN/genética
17.
J Bacteriol ; 194(5): 1216-25, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178975

RESUMEN

The recently discovered CRISPR-Cas adaptive immune system is present in almost all archaea and many bacteria. It consists of cassettes of CRISPR repeats that incorporate spacers homologous to fragments of viral or plasmid genomes that are employed as guide RNAs in the immune response, along with numerous CRISPR-associated (cas) genes that encode proteins possessing diverse, only partially characterized activities required for the action of the system. Here, we investigate the evolution of the cas genes and show that they evolve under purifying selection that is typically much weaker than the median strength of purifying selection affecting genes in the respective genomes. The exceptions are the cas1 and cas2 genes that typically evolve at levels of purifying selection close to the genomic median. Thus, although these genes are implicated in the acquisition of spacers from alien genomes, they do not appear to be directly involved in an arms race between bacterial and archaeal hosts and infectious agents. These genes might possess functions distinct from and additional to their role in the CRISPR-Cas-mediated immune response. Taken together with evidence of the frequent horizontal transfer of cas genes reported previously and with the wide-spread microscale recombination within these genes detected in this work, these findings reveal the highly dynamic evolution of cas genes. This conclusion is in line with the involvement of CRISPR-Cas in antiviral immunity that is likely to entail a coevolutionary arms race with rapidly evolving viruses. However, we failed to detect evidence of strong positive selection in any of the cas genes.


Asunto(s)
Archaea/genética , Bacterias/genética , Evolución Molecular , Recombinación Genética , Selección Genética , Biología Computacional/métodos , Genes Arqueales , Genes Bacterianos
18.
PLoS Comput Biol ; 7(3): e1002024, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21455287

RESUMEN

The division of labor between template and catalyst is a fundamental property of all living systems: DNA stores genetic information whereas proteins function as catalysts. The RNA world hypothesis, however, posits that, at the earlier stages of evolution, RNA acted as both template and catalyst. Why would such division of labor evolve in the RNA world? We investigated the evolution of DNA-like molecules, i.e. molecules that can function only as template, in minimal computational models of RNA replicator systems. In the models, RNA can function as both template-directed polymerase and template, whereas DNA can function only as template. Two classes of models were explored. In the surface models, replicators are attached to surfaces with finite diffusion. In the compartment models, replicators are compartmentalized by vesicle-like boundaries. Both models displayed the evolution of DNA and the ensuing division of labor between templates and catalysts. In the surface model, DNA provides the advantage of greater resistance against parasitic templates. However, this advantage is at least partially offset by the disadvantage of slower multiplication due to the increased complexity of the replication cycle. In the compartment model, DNA can significantly delay the intra-compartment evolution of RNA towards catalytic deterioration. These results are explained in terms of the trade-off between template and catalyst that is inherent in RNA-only replication cycles: DNA releases RNA from this trade-off by making it unnecessary for RNA to serve as template and so rendering the system more resistant against evolving parasitism. Our analysis of these simple models suggests that the lack of catalytic activity in DNA by itself can generate a sufficient selective advantage for RNA replicator systems to produce DNA. Given the widespread notion that DNA evolved owing to its superior chemical properties as a template, this study offers a novel insight into the evolutionary origin of DNA.


Asunto(s)
Replicación del ADN , ADN/química , Evolución Molecular , Genoma , Modelos Genéticos , ARN/química , Moldes Genéticos , Transcripción Genética
19.
PLoS Comput Biol ; 5(10): e1000542, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19834556

RESUMEN

Multilevel selection has been indicated as an essential factor for the evolution of complexity in interacting RNA-like replicator systems. There are two types of multilevel selection mechanisms: implicit and explicit. For implicit multilevel selection, spatial self-organization of replicator populations has been suggested, which leads to higher level selection among emergent mesoscopic spatial patterns (traveling waves). For explicit multilevel selection, compartmentalization of replicators by vesicles has been suggested, which leads to higher level evolutionary dynamics among explicitly imposed mesoscopic entities (protocells). Historically, these mechanisms have been given separate consideration for the interests on its own. Here, we make a direct comparison between spatial self-organization and compartmentalization in simulated RNA-like replicator systems. Firstly, we show that both mechanisms achieve the macroscopic stability of a replicator system through the evolutionary dynamics on mesoscopic entities that counteract that of microscopic entities. Secondly, we show that a striking difference exists between the two mechanisms regarding their possible influence on the long-term evolutionary dynamics, which happens under an emergent trade-off situation arising from the multilevel selection. The difference is explained in terms of the difference in the stability between self-organized mesoscopic entities and externally imposed mesoscopic entities. Thirdly, we show that a sharp transition happens in the long-term evolutionary dynamics of the compartmentalized system as a function of replicator mutation rate. Fourthly, the results imply that spatial self-organization can allow the evolution of stable folding in parasitic replicators without any specific functionality in the folding itself. Finally, the results are discussed in relation to the experimental synthesis of chemical Darwinian systems and to the multilevel selection theory of evolutionary biology in general. To conclude, novel evolutionary directions can emerge through interactions between the evolutionary dynamics on multiple levels of organization. Different multilevel selection mechanisms can produce a difference in the long-term evolutionary trend of identical microscopic entities.


Asunto(s)
Evolución Biológica , Modelos Teóricos
20.
Biol Direct ; 3: 33, 2008 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-18694481

RESUMEN

BACKGROUND: The simplest conceivable example of evolving systems is RNA molecules that can replicate themselves. Since replication produces a new RNA strand complementary to a template, all templates would eventually become double-stranded and, hence, become unavailable for replication. Thus the problem of how to separate the two strands is considered a major issue for the early evolution of self-replicating RNA. One biologically plausible way to copy a double-stranded RNA is to displace a preexisting strand by a newly synthesized strand. Such copying can in principle be initiated from either the (+) or (-) strand of a double-stranded RNA. Assuming that only one of them, say (+), can act as replicase when single-stranded, strand displacement produces a new replicase if the (-) strand is the template. If, however, the (+) strand is the template, it produces a new template (but no replicase). Modern transcription exhibits extreme strand preference wherein anti-sense strands are always the template. Likewise, replication by strand displacement seems optimal if it also exhibits extreme strand preference wherein (-) strands are always the template, favoring replicase production. Here we investigate whether such strand preference can evolve in a simple RNA replicator system with strand displacement. RESULTS: We first studied a simple mathematical model of the replicator dynamics. Our results indicated that if the system is well-mixed, there is no selective force acting upon strand preference per se. Next, we studied an individual-based simulation model to investigate the evolution of strand preference under finite diffusion. Interestingly, the results showed that selective forces "emerge" because of finite diffusion. Strikingly, the direction of the strand preference that evolves [i.e. (+) or (-) strand excess] is a complex non-monotonic function of the diffusion intensity. The mechanism underlying this behavior is elucidated. Furthermore, a speciation-like phenomenon is observed under certain conditions: two extreme replication strategies, namely replicase producers and template producers, emerge and coexist among competing replicators. CONCLUSION: Finite diffusion enables the evolution of strand preference, the direction of which is a non-monotonic function of the diffusion intensity. By identifying the conditions under which strand preference evolves, this study provides an insight into how a rudimentary transcription-like pattern might have emerged in an RNA-based replicator system. REVIEWERS: This article was reviewed by Eugene V Koonin, Rob Kinght and István Scheuring (nominated by David H Ardell). For the full reviews, please go to the Reviewers' comments section.


Asunto(s)
Evolución Molecular , Modelos Genéticos , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Transcripción Genética , Conceptos Matemáticos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...