Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(19): 20839-20848, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38770267

RESUMEN

Transparency, flexibility, and high thermal conductivity are trade-offs. Specifically, we have investigated a cross-linked acrylic liquid crystal elastomer (LCE) that exhibits both transparency and flexibility while maintaining a high level of thermal conductivity. The transparent monodomain LCE sheet was achieved through a process of stretching an initially opaque polydomain sheet to 80% elongation and subsequently subjecting it to photocuring. The thermal conductivity in the stretching direction (x) of the monodomain LCE sheet was found to be 1.8 times higher than that of the prestretched polydomain sheet, consistent with findings from previous studies. However, in the orthogonal direction (y) to the stretching (x) direction, the thermal conductivity exhibited an even higher value, being 1.7 times greater than in the x-direction, with a value of 3.0 W/(m·K). This unique observation prompted us to conduct further investigation through higher-order structural analysis of these LCE sheets using 2D wide-angle X-ray scattering (WAXS) analysis. In the transparent sheet, the LCE molecules were aligned in the sheet in the stretching x-direction (monodomain structure) for the out-of-plane direction. However, in the in-plane x-direction, the molecular plane spacing exhibited random orientation at a period of 0.45 nm. In contrast, within the y-direction of the inner layer, the molecular plane spacing exhibited a uniaxial horizontal orientation at the same period length as in the x-direction. The heat energy entering into the y-direction once spreads to the x-direction, but it was considered that the reason for the higher thermal conductivity to the y-direction would be forming covalent bonds that function as new heat transmission paths, in the direction intersecting to the x-direction during photocuring. Therefore, we concluded that the synergistic effect of the high level of the ordered inner structure and covalent bonding structure due to cross-linking in the y-direction contributes to its higher thermal conductivity compared to that in the x-direction, which exhibits a random in-plane structure. Additionally, we have fabricated an LCE composite sheet filled with 75 vol % of alumina particles using a polydomain-type LCE as the base material. The composite sheet exhibits remarkable thermal conductivity in the thickness direction, measuring at 9.8 W/(m·K), while maintaining a flexibility characterized by an elastic modulus of 70 MPa. This thermal conductivity surpasses that of a nonmesogenic acrylic composite sheet with identical alumina particle filling, which measured at 3.9 W/(m·K), more than twice as much. The presence of the mesogen skeleton has been demonstrated to enhance heat transfer, even within soft composites, by facilitating the formation of an ordered structure.

2.
ACS Omega ; 8(36): 32365-32371, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720757

RESUMEN

The molecular orientation of a liquid crystalline (LC) epoxy resin (LCER) on silane coupling surfaces of amorphous soda-lime-silica glass substrates was investigated. The LC epoxy monomer on the silane coupling surfaces of the substrates was revealed to form a smectic A (SmA) phase with planar alignments because of the relatively low surface free energy. An LCER with a curing agent, however, formed a homeotropically aligned SmA structure by curing on a substrate surface modified using a silane coupling agent with amino groups. This formation of homeotropic alignment was considered due to the attribution of the reaction between the amino group on the surface of the substrate and the epoxy group of the LCER. The homeotropic alignment had a relatively high orientation parameter of 0.95. Therefore, it is expected to possess high thermal conductivity and be applied as high-thermal-conductivity adhesives or packaging materials for electrical and electronic devices.

3.
ACS Omega ; 5(33): 20792-20799, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32875213

RESUMEN

For the development of functional thin films with high thermal conductivity, the local ordering structure of a cured liquid crystalline epoxy resin (LCER) droplet was investigated by using synchrotron radiation microbeam small-angle X-ray scattering. The cured LCER in the vicinity of a substrate with low surface free energy was revealed to form a polydomain smectic-A (SmA) structure in which the normal direction of the layers was random in each domain, although the alignment was planar near the air interface. On the other hand, the cured LCER on a substrate with high surface free energy formed a homeotropically aligned SmA structure in the region within 21 µm from the surface of the substrate. Therefore, a 20 µm thick LCER film was fabricated and found to form a homeotropically aligned monodomain-like SmA structure throughout the whole film with a high thermal conductivity (0.81-5.8 W m-1 K-1). This film with a high thermal conductivity is expected to be applicable for adhesion and precoating materials for electrical and electronic devices.

4.
ACS Omega ; 3(3): 3562-3570, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458608

RESUMEN

The molecular orientation effect of a liquid crystalline (LC) epoxy resin (LCER) on thermal conductivity was investigated, with the thermal conductivity depending on the surface free energy of amorphous soda-lime-silica glass substrate surfaces modified using physical surface treatments. The LC epoxy monomer was revealed to form a smectic A (SmA) phase with homeotropic alignments on the surfaces of substrates that possess high surface free energies of 71.3 and 72.7 mN m-1, but forming a planar alignment on the surface of a substrate that possesses a relatively low surface free energy of 46.3 mN m-1. The optical microscopy observations and the X-ray analyses revealed that the LC epoxy monomer also induced a homeotropically aligned SmA structure due to cross-linking with a curing agent on the high-free-energy surface. The orientational order parameter of the resulting homeotropic SmA structure was calculated from the grazing incidence small-angle X-ray scattering patterns to be 0.73-0.75. The thermal conductivity of the cross-linked LCER forming a homeotropically aligned SmA structure was also estimated to be 2.0 and 5.8 W m-1 K-1 for the average and maximum in the direction of the Sm layer normal. The value of the thermal conductivity was remarkable among the thermosetting polymers and ceramic glass, and the LCER could be applied for high-thermal-conductive adhesives and packaging materials in electrical and electronic devices.

5.
ACS Appl Mater Interfaces ; 1(2): 225-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20353204

RESUMEN

A highly thermoconductive insulative polymer nanocomposite with a nanoporous alpha-alumina sheet was reported. The thermal conductivity of the nanocomposite along the surface normal was 12 W m(-1) K(-1) (41 vol % alumina), a value as high as that predicted theoretically for a nanocomposite with thermoconductive fillers that form a perfectly connected thermoconductive network. The high thermal conductivity is probably due to the continuous alpha-alumina phase that functions as an efficient phonon path in the nanocomposite. The results suggest that the structure of the filler is important for the design of highly thermoconductive materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...