Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(13): 3971-3977, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501652

RESUMEN

Time-resolved or time-correlation measurements using cathodoluminescence (CL) reveal the electronic and optical properties of semiconductors, such as their carrier lifetimes, at the nanoscale. However, halide perovskites, which are promising optoelectronic materials, exhibit significantly different decay dynamics in their CL and photoluminescence (PL). We conducted time-correlation CL measurements of CsPbBr3 using Hanbury Brown-Twiss interferometry and compared them with time-resolved PL. The measured CL decay time was on the order of subnanoseconds and was faster than PL decay at an excited carrier density of 2.1 × 1018 cm-3. Our experiment and analytical model revealed the CL dynamics induced by individual electron incidences, which are characterized by highly localized carrier generation followed by a rapid decrease in carrier density due to diffusion. This carrier diffusion can play a dominant role in the CL decay time for undoped semiconductors, in general, when the diffusion dynamics are faster than the carrier recombination.

2.
Nanotechnology ; 34(13)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36608329

RESUMEN

A focused ion beam (FIB) can precisely mill samples and freely form any nanostructure even on surfaces with curvature, like a nanowire surface, which are difficult to implement by using conventional fabrication techniques, e.g. electron beam lithography. Thus, this tool is promising for nanofabrication; however, fabrication damage and contamination are critical issues, which deteriorate optical properties. In this work, we investigated the protective performance of Al2O3against the FIB process (especially by a gallium ion). Nanowires were coated with Al2O3as a hard mask to protect them from damage during FIB nanofabrication. To estimate the protective performance, their emission properties by photoluminescence measurement and time-resolved spectroscopy were compared with and without Al2O3coating conditions. From the results, we confirmed that the Al2O3coating protects the nanowires. In addition, the nanowires also showed lasing behavior even after FIB processing had been carried out to implement nanostructures. This indicates that their optical properties are well maintained. Thus, our study proves the usefulness of FIBs for future nanofabrication.

3.
Sci Rep ; 11(1): 8587, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883569

RESUMEN

The Kuramoto model is a mathematical model for describing the collective synchronization phenomena of coupled oscillators. We theoretically demonstrate that an array of coupled photonic crystal lasers emulates the Kuramoto model with non-delayed nearest-neighbor coupling (the local Kuramoto model). Our novel strategy employs indirect coupling between lasers via additional cold cavities. By installing cold cavities between laser cavities, we avoid the strong coupling of lasers and realize ideal mutual injection-locking with effective non-delayed dissipative coupling. First, after discussing the limit cycle interpretation of laser oscillation, we demonstrate the synchronization of two indirectly coupled lasers by numerically simulating coupled-mode equations. Second, by performing a phase reduction analysis, we show that laser dynamics in the proposed device can be mapped to the local Kuramoto model. Finally, we briefly demonstrate that a chain of indirectly coupled photonic crystal lasers actually emulates the one-dimensional local Kuramoto chain. We also argue that our proposed structure, which consists of periodically aligned cold cavities and laser cavities, will best be realized by using state-of-the-art buried multiple quantum well photonic crystals.

4.
Opt Express ; 28(21): 32106, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115173

RESUMEN

Correction for the citation of a reference.

5.
Opt Express ; 28(19): 27657-27675, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988055

RESUMEN

A driven high-Q Si microcavity is known to exhibit limit cycle oscillation originating from carrier-induced and thermo-optic nonlinearities. We propose a novel nanophotonic device to realize synchronized optical limit cycle oscillations with coupled silicon (Si) photonic crystal (PhC) microcavities. Here, coupled limit cycle oscillators are realized by using coherently coupled Si PhC microcavities. By simulating coupled-mode equations, we theoretically demonstrate mutual synchronization (entrainment) of two limit cycles induced by coherent coupling. Furthermore, we interpret the numerically simulated synchronization in the framework of phase description. Since our proposed design is perfectly compatible with current silicon photonics fabrication processes, the synchronization of optical limit cycle oscillations will be implemented in future silicon photonic circuits.

6.
Elife ; 92020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32597754

RESUMEN

Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we "clone" the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz ("TcMAC21"). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.


Asunto(s)
Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Ratones Transgénicos/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Cardiopatías Congénitas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Trisomía/genética , Secuenciación Completa del Genoma
7.
Nano Lett ; 19(11): 8059-8065, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638818

RESUMEN

Mid-infrared (MIR) photonics is a developing technology for sensing materials by their characteristic MIR absorptions. Since silicon (Si) is a low-loss material in most of the MIR region, Si photonic structures have been fabricated to guide and confine MIR light, and they allow us to achieve sensitive and integrated sensing devices. However, since the implementation of MIR light sources on Si is still challenging, we propose a thick indium arsenide (InAs) nanowire as an MIR laser that can couple to Si photonic structures with material manipulation. In this study, thick InAs nanowires are grown on an indium phosphide substrate with a self-catalyst vapor-liquid-solid method and transferred to gold-deposited SiO2/Si substrates. Low-temperature microphotoluminescence (PL) spectroscopy shows that InAs nanowires exhibit broad PL peaking at a wavelength of around 2.6 µm (3850 cm-1 in frequency), which corresponds to the bandgap energy of wurtzite InAs. At high optical pump fluences, single InAs nanowire exhibits sharp emission peaks, while their integrated intensity and polarization degree increase abruptly at the threshold pump fluence. These nonlinear behaviors indicate that the MIR lasing action takes place in the InAs nanowire in its cavity mode. Our demonstration of the MIR nanowire laser expands the wavelength coverage and potential application of semiconductor nanowires.

8.
Sci Adv ; 5(2): eaat8896, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30801006

RESUMEN

Telecom-band single nanowire lasers made by the bottom-up vapor-liquid-solid approach, which is technologically important in optical fiber communication systems, still remain challenging. Here, we report telecom-band single nanowire lasers operating at room temperature based on multi-quantum-disk InP/InAs heterostructure nanowires. Transmission electron microscopy studies show that highly uniform multi-quantum-disk InP/InAs structure is grown in InP nanowires by self-catalyzed vapor-liquid-solid mode using indium particle catalysts. Optical excitation of individual nanowires yielded lasing in telecom band operating at room temperature. We show the tunability of laser wavelength range in telecom band by modulating the thickness of single InAs quantum disks through quantum confinement along the axial direction. The demonstration of telecom-band single nanowire lasers operating at room temperature is a major step forward in providing practical integrable coherent light sources for optoelectronics and data communication.

9.
Proc Natl Acad Sci U S A ; 116(8): 3072-3081, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718425

RESUMEN

Although "genomically" humanized animals are invaluable tools for generating human disease models as well as for biomedical research, their development has been mainly restricted to mice via established transgenic-based and embryonic stem cell-based technologies. Since rats are widely used for studying human disease and for drug efficacy and toxicity testing, humanized rat models would be preferred over mice for several applications. However, the development of sophisticated humanized rat models has been hampered by the difficulty of complex genetic manipulations in rats. Additionally, several genes and gene clusters, which are megabase range in size, were difficult to introduce into rats with conventional technologies. As a proof of concept, we herein report the generation of genomically humanized rats expressing key human drug-metabolizing enzymes in the absence of their orthologous rat counterparts via the combination of chromosome transfer using mouse artificial chromosome (MAC) and genome editing technologies. About 1.5 Mb and 700 kb of the entire UDP glucuronosyltransferase family 2 and cytochrome P450 family 3 subfamily A genomic regions, respectively, were successfully introduced via the MACs into rats. The transchromosomic rats were combined with rats carrying deletions of the endogenous orthologous genes, achieved by genome editing. In the "transchromosomic humanized" rat strains, the gene expression, pharmacokinetics, and metabolism observed in humans were well reproduced. Thus, the combination of chromosome transfer and genome editing technologies can be used to generate fully humanized rats for improved prediction of the pharmacokinetics and drug-drug interactions in humans, and for basic research, drug discovery, and development.


Asunto(s)
Citocromo P-450 CYP3A/genética , Edición Génica , Glucuronosiltransferasa/genética , Inactivación Metabólica/genética , Animales , Técnicas de Transferencia de Gen , Genoma , Humanos , Tasa de Depuración Metabólica/genética , Ratones , Ratones Transgénicos , Ratas
10.
Opt Express ; 26(20): 26598-26617, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469744

RESUMEN

Few-cell point-defect photonic crystal (PhC) nanocavities (such as LX and H1 type cavities), have several unique characteristics including an ultra-small mode volume (Vm), a small device footprint advantageous for dense integration, and a large mode spacing advantageous for high spontaneous-emission coupling coefficient (ß), which are promising for energy-efficient densely-integratable on-chip laser light sources enhanced by the cavity QED effect. To achieve this goal, a high quality factor (Q) is essential, but conventional few-cell point-defect cavities do not have a sufficiently high Q. Here we adopt a series of modified designs of LX cavities with a buried heterostructure (BH) multi-quantum-well (MQW) active region that can achieve a high Q while maintaining their original advantages and fabricate current-injection laser devices. We have successfully observed continuous-wave (CW) lasing in InP-based L1, L2, L3 and L5 PhC nanocavities at 23°C with a DC current injection lower than 10 µA and a bias voltage lower than 0.9 V. The active volume is ultra-small while maintaining a sufficiently high confinement factor, which is as low as ~10-15 cm3 for a single-cell (L1) nanocavity. This is the first room-temperature current-injection CW lasing from any types of few-cell point-defect PhC nanocavities (LX or H1 types). Our report marks an important step towards realizing a nanolaser diode with a high cavity-QED effect, which is promising for use with on-chip densely integrated laser sources in photonic networks-on-chip combined with CMOS processors.

11.
Opt Express ; 24(24): 28039-28055, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906370

RESUMEN

Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 µm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 µm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.

12.
Opt Express ; 24(23): 26792-26808, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27857409

RESUMEN

Nanowire-induced SiN photonic crystal (PhC) nanocavities specifically designed for the ultra-violet and visible range are investigated by three-dimensional finite-difference time-domain calculations. As opposed to their silicon PhC counterpart, we find that the formation of nanowire-induced two-dimensional (2D) SiN PhC nanocavities is more challenging because of the low refractive index of SiN. We thus discuss optimization strategies to circumvent such difficulties and we investigate the influence of critical design parameters such as PhC geometry, as well as nanowire geometry and position. We also propose a novel nanowire-induced cavity design based on one-dimensional (1D) nanobeam PhCs. We finally report on nanowire-induced nanocavity designs in 1D (resp. 2D) PhCs presenting quality factors as high as Qc = 5.1 x 104 (resp. Qc = 2.5 x 104 with a mode volume Vm=1.8(λ/nrNW)3 (resp. Vm=5.1(λ/nrNW)3), which show good prospects for light-matter interaction in the near-ultraviolet and visible ranges.

13.
Opt Express ; 24(4): 3441-50, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907003

RESUMEN

Buried multiple-quantum-well (MQW) 2D photonic crystal cavities (PhC) achieve low non-radiative recombination and high carrier confinement thus making them highly efficient emitters. In this study, we have investigated the lasing characteristics of high-ß(spontaneous emission coupling factor) buried MQW photonic crystal nanocavity lasers to clarify the theoretically-predicted thresholdless operation in high-ß nanolasers. The strong light and carrier confinement and low non-radiative recombination in our nanolasers have enabled us to clearly demonstrate very smooth lasing transition in terms of the light-in vs light-out curve and cavity linewidth. To clarify the thresholdless lasing behavior, we carried out a lifetime measurement and a photon correlation measurement, which also confirmed the predicted behavior. In addition, we systematically investigated the dependence of ß on the detuning frequency, which was in good agreement with a numerical simulation based on the finite-difference time-domain method. This is the first convincing systematic study of nanolasers based on an MQW close to the thresholdless regime.

14.
ACS Nano ; 9(11): 10580-9, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26348087

RESUMEN

This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

15.
Nat Mater ; 13(3): 279-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553654

RESUMEN

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-Q nanocavity can be created by placing a single III­V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III­V nanocavity devices in Si photonic circuits.

16.
Transgenic Res ; 23(3): 441-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24488595

RESUMEN

Transchromosomic (Tc) technology using human chromosome fragments (hCFs), or human artificial chromosomes (HACs), has been used for generating mice containing Mb-sized segments of the human genome. The most significant problem with freely segregating chromosomes with human centromeres has been mosaicism, possibly due to the instability of hCFs or HACs in mice. We report a system for the stable maintenance of Mb-sized human chromosomal fragments following translocation to mouse chromosome 10 (mChr.10). The approach utilizes microcell-mediated chromosome transfer and a combination of site-specific loxP insertion, telomere-directed chromosome truncation, and precise reciprocal translocation for the generation of Tc mice. Human chromosome 21 (hChr.21) was modified with a loxP site and truncated in homologous recombination-proficient chicken DT40 cells. Following transfer to mouse embryonic stem cells harboring a loxP site at the distal region of mChr.10, a ~4 Mb segment of hChr.21 was translocated to the distal region of mChr.10 by transient expression of Cre recombinase. The residual hChr.21/mChr.10ter fragment was reduced by antibiotic negative selection. Tc mice harboring the translocated ~4 Mb fragment were generated by chimera formation and germ line transmission. The hChr.21-derived Mb fragment was maintained stably in tissues in vivo and expression profiles of genes on hChr.21 were consistent with those seen in humans. Thus, Tc technology that enables translocation of human chromosomal regions onto host mouse chromosomes will be useful for studying in vivo functions of the human genome, and generating humanized model mice.


Asunto(s)
Cromosomas Artificiales Humanos/genética , Cromosomas Humanos Par 21/genética , Técnicas de Transferencia de Gen , Ratones Transgénicos/genética , Animales , Quimera/genética , Genoma Humano , Humanos , Hibridación Fluorescente in Situ , Integrasas/genética , Ratones
17.
ACS Synth Biol ; 3(12): 903-14, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23654256

RESUMEN

Human chromosome fragments (hCFs) and human artificial chromosomes (HACs) can be transferred into mouse ES cells to produce trans-chromosomic (Tc) mice. Although hCFs and HACs containing large genomic DNAs can be autonomously maintained in Tc mice, their retention rate is variable in mouse ES cell lines and Tc mouse tissues, possibly because of centromere differences between the species. To improve the retention rate of artificial chromosomes in mouse cells, we constructed novel mouse artificial chromosome (MAC) vectors by truncating a natural mouse chromosome at a site adjacent to the centromeric region. We obtained cell clones containing the MAC vectors that were stably maintained in mouse ES cells and various tissues in Tc mice. The MACs possess acceptor sites into which a desired gene or genes can be inserted. Thus, Tc mice harboring the MAC vectors may be valuable tools for functional analyses of desired genes, producing humanized model mice, and synthetic biology.


Asunto(s)
Cromosomas Artificiales/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Transfección
18.
Biochem Biophys Res Commun ; 442(1-2): 44-50, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24216103

RESUMEN

Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis.


Asunto(s)
Inestabilidad Cromosómica , Cromosomas Artificiales de los Mamíferos/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Animales , Línea Celular Tumoral , Femenino , Células Germinativas , Humanos , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Factores Sexuales
19.
Opt Express ; 21(3): 3651-7, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23481821

RESUMEN

In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Nanotubos de Carbono/química , Polímeros/química , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
20.
Hum Mol Genet ; 22(3): 578-92, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23125282

RESUMEN

Human CYP3A is the most abundant P450 isozyme present in the human liver and small intestine, and metabolizes around 50% of medical drugs on the market. The human CYP3A subfamily comprises four members (CYP3A4, CYP3A5, CYP3A7, CYP3A43) encoded on human chromosome 7. However, transgenic mouse lines carrying the entire human CYP3A cluster have not been constructed because of limitations in conventional cloning techniques. Here, we show that the introduction of a human artificial chromosome (HAC) containing the entire genomic human CYP3A locus recapitulates tissue- and stage-specific expression of human CYP3A genes and xenobiotic metabolism in mice. About 700 kb of the entire CYP3A genomic segment was cloned into a HAC (CYP3A-HAC), and trans-chromosomic (Tc) mice carrying a single copy of germline-transmittable CYP3A-HAC were generated via a chromosome-engineering technique. The tissue- and stage-specific expression profiles of CYP3A genes were consistent with those seen in humans. We further generated mice carrying the CYP3A-HAC in the background homozygous for targeted deletion of most endogenous Cyp3a genes. In this mouse strain with 'fully humanized' CYP3A genes, the kinetics of triazolam metabolism, CYP3A-mediated mechanism-based inactivation effects and formation of fetal-specific metabolites of dehydroepiandrosterone observed in humans were well reproduced. Thus, these mice are likely to be valuable in evaluating novel drugs metabolized by CYP3A enzymes and in studying the regulation of human CYP3A gene expression. Furthermore, this system can also be used for generating Tc mice carrying other human metabolic genes.


Asunto(s)
Cromosomas Artificiales Humanos , Citocromo P-450 CYP3A/genética , Regulación Enzimológica de la Expresión Génica , Triazolam/farmacocinética , Xenobióticos/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Southern Blotting , Células CHO , Línea Celular , Cromosomas Humanos Par 7 , Clonación Molecular , Cricetinae , Citocromo P-450 CYP3A/metabolismo , Deshidroepiandrosterona/metabolismo , Femenino , Sitios Genéticos , Humanos , Inactivación Metabólica , Intestinos/enzimología , Hígado/enzimología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Microsomas/metabolismo , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...