RESUMEN
Toxoplasmosis is a globally significant disease that poses a severe threat to immunocompromised individuals, especially in Brazil, where a high prevalence of virulent and atypical strains of Toxoplasma gondii is observed. In 1998, the EGS strain, exhibiting a unique infection phenotype, was isolated in Brazil, adding to the complexity of strain diversity. The P2X7 receptor is critical in inflammation and controlling intracellular microorganisms such as T. gondii. However, its genetic variability can result in receptor dysfunction, potentially worsening susceptibility. This study investigates the role of the P2X7 receptor during acute infection induced by the EGS atypical strain, offering insight into the mechanisms of T. gondii infection in this context. We infected the female C57BL/6 (WT) or P2X7 knockout (P2X7-/-) by gavage. The EGS infection causes intestinal inflammation. The P2X7-/- mice presented higher parasite load in the intestine, spleen, and liver. The absence of the P2X7 receptor disrupts inflammatory cell balance by reducing NLRP3, IL-1ß, and Foxp3 expression while increasing IFN-γ expression and production in the intestine. In the liver, P2X7-/- animals demonstrate diminished inflammatory infiltrate within the portal and lobular regions concurrent with an enlargement of the spleen. In conclusion, the infection of mice with the EGS strain elicited immune alterations, leading to acute inflammation and cytokine dysregulation, while the P2X7 receptor conferred protection against parasitic proliferation across multiple organs.
Asunto(s)
Genotipo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X7 , Toxoplasma , Animales , Toxoplasma/inmunología , Toxoplasma/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/inmunología , Ratones , Femenino , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Inflamación/inmunología , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/parasitología , Carga de Parásitos , Virulencia , Enfermedad Aguda , Citocinas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Hígado/parasitología , Hígado/inmunología , Hígado/patología , Hígado/metabolismoRESUMEN
Sex differences in metabolic dysfunction-associated steatotic liver disease (MASLD) have been reported. Oxidative stress and inflammation are involved in the progression of MASLD. Thus, we aimed to evaluate liver redox homeostasis and inflammation in male and female rats fed a high-fat diet (HFD). Male and female Wistar rats were divided into the following groups: standard chow diet (SCD) or HFD during 12 weeks. HFD groups of both sexes had higher hepatocyte injury, with no differences between the sexes. Portal space liver inflammation was higher in females-HFD compared to females-SCD, whereas no differences were observed in males. Lobular inflammation and overall liver inflammation were higher in HFD groups, regardless of sex. TNF-α, IL-6, and IL-1ß levels were higher in males-HFD compared to males-SCD, but no differences were observed in females. Catalase activity was higher in males compared to females, with no differences between the SCD and HFD groups of both sexes. Glutathione peroxidase activity was higher in females compared to males, with no differences between the SCD and HFD groups in both sexes. Lipid peroxidation was higher in female-SCD when compared to male-SCD, and in both male- and female-HFD compared to SCD groups. Furthermore, both cytoplasmic and nuclear NRF2 staining were lower in the HFD group compared to the SCD group in males. However, female-HFD exhibited reduced nuclear NRF2 staining compared to the female-SCD group. In conclusion, our study demonstrated that while both male and female rats developed metabolic dysfunction-associated steatohepatitis after 12 weeks of HFD, the alterations in inflammatory cytokines and redox balance were sexually dimorphic.
Asunto(s)
Citocinas , Dieta Alta en Grasa , Homeostasis , Hígado , Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos , Citocinas/metabolismo , Hígado/metabolismo , Peroxidación de Lípido , Ratas , Factores Sexuales , Factor 2 Relacionado con NF-E2/metabolismo , Caracteres SexualesRESUMEN
OBJECTIVE: this research objective was to develop a new peritoneal adhesion animal model that would lead to adhesions formation in all operated animals, simple and reproducible, associated with maintenance the animal's health. METHODS: eighteen adult male Wistar rats (Rattus norvegicus) were randomly distributed into three groups: Control Group (anatomical and clinical parameters), Sham Group (delicate manipulation of the stomach and exposure of the peritoneal cavity to ambient air) and Surgery Group (gastrotomy followed by gastrorrhaphy). The animals were analyzed and classificated macroscopically according to two adhesion classification models and differences between groups were considered significant when p<0.05. RESULTS: the six animals in the control group had no peritoneal adhesions, three of the six animals in the sham group had focal peritoneal adhesions, and all animals in the surgery group (gastrotomy followed by gastrorraphy) had firm peritoneal adhesions. All adhesions found were macroscopically quantified and microscopically confirmed, without carrying out a microscopic classification of the adhesions. CONCLUSION: the new model developed of gastrotomy followed by gastrorrhaphy, proved to be safe and efficient to induce and study peritoneal adhesions.
Asunto(s)
Enfermedades Peritoneales , Animales , Masculino , Ratas , Abdomen , Modelos Animales de Enfermedad , Gastrectomía , Enfermedades Peritoneales/cirugía , Complicaciones Posoperatorias , Ratas Wistar , Estómago , Adherencias Tisulares/etiología , Adherencias Tisulares/cirugíaRESUMEN
Diet-induced obesity triggers elevation of circulating pro-inflammatory cytokines and acute-phase proteins, including interferons (IFNs). IFNs strongly contribute to low-grade inflammation associated with obesity-related complications, such as nonalcoholic fat liver disease and diabetes. In this study, AG129 mice model (double-knockout strain for IFN α/ß/γ receptors) was fed with a high-fat high-sucrose (HFHS) diet (Western diet) for 20 weeks aiming to understand the impact of IFN receptor ablation on diet-induced obesity, insulin resistance, and nonalcoholic fat liver disease. Mice were responsive to the diet, becoming obese after 20 weeks of HFHS diet which was accompanied by 2-fold increase of white adipose tissues. Moreover, animals developed glucose and insulin intolerance, as well as dysregulation of insulin signaling mediators such as Insulin Receptor Substrate 1 (IRS1), protein kinase B (AKT), and S6 ribosomal protein. Liver increased interstitial cells, and lipid accumulation was also found, presenting augmented fibrotic markers (transforming growth factor beta 1 [Tgfb1], Keratin 18 [Krt18], Vimentin [Vim]), yet lower expression on IFN receptor downstream proteins (Toll-like receptor [TLR] 4, nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB], and cAMP response element-binding protein [CREB]). Thus, IFN receptor ablation promoted effects on NFκB and CREB pathways, with no positive effects on systemic homeostasis in diet-induced obese mice. Therefore, we conclude that IFN receptor signaling is not essential for promoting the complications of diet-induced obesity and thus cannot be correlated with metabolic diseases in a noninfectious condition.
Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Resistencia a la Insulina/fisiología , Dieta Occidental , Obesidad/complicaciones , Hígado/metabolismo , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Dieta Alta en Grasa/efectos adversos , Receptores de Interferón/metabolismo , Ratones Endogámicos C57BLRESUMEN
OBJECTIVES: The aim of this study was to evaluate the potential protective effect of Chromobacterium violaceum and violacein against periodontitis, in experimental models. MATERIALS AND METHODS: A double-blind experimental study on the exposure to C. violaceum or violacein in experimentally ligature-induced periodontitis, as preventive factors against alveolar bone loss by periodontitis. Bone resorption was assessed by morphometry. Antibacterial potential of violacein was assessed in an in vitro assay. Its cytotoxicity and genotoxicity were evaluated using the Ames test and SOS Chromotest assay, respectively. RESULTS: The potential of C. violaceum to prevent/limit bone resorption by periodontitis was confirmed. Daily exposure to 106 cells/ml in water intake since birth and only during the first 30 days of life significantly reduced bone loss from periodontitis in teeth with ligature. Violacein extracted from C. violaceum was efficient in inhibiting or limiting bone resorption and had a bactericidal effect against Porphyromonas gingivalis in the in vitro assay. CONCLUSIONS: We conclude that C. violaceum and violacein have the potential to prevent or limit the progression of periodontal diseases, in an experimental model. CLINICAL RELEVANCE: The effect of an environmental microorganism with potential action against bone loss in animal models with ligature-induced periodontitis represents the possibility of understanding the etiopathogenesis of periodontal diseases in populations exposed to C. violaceum and the possibility of new probiotics and antimicrobials. This would imply new preventive and therapeutic possibilities.
Asunto(s)
Pérdida de Hueso Alveolar , Antibacterianos , Periodontitis , Animales , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/etiología , Antibacterianos/administración & dosificación , Modelos Animales de Enfermedad , Periodontitis/tratamiento farmacológico , Periodontitis/prevención & control , Periodontitis/complicaciones , Indoles/administración & dosificación , Método Doble Ciego , Porphyromonas gingivalis/efectos de los fármacosRESUMEN
BACKGROUND AND OBJECTIVES: Periodontitis is a highly prevalent disease in psychiatric patients, including those undergoing symptomatic treatment with second-generation antipsychotics. Some of these drugs, such as clozapine (CLO) and olanzapine (OLA), have prominent metabolic effects such as weight gain, hyperglycemia, and dyslipidemia, which are risk factors for periodontitis. In addition to the metabolic effects, there are reports of changes in salivary flow, gingival bleeding, and caries. In this context, we aimed to evaluate if the metabolic effects of OLA and CLO alter periodontal parameters in an animal model of periodontitis without the environmental and psychosocial biases inherent to human diseases. METHODS: In the first set of experiments, male and female adult Wistar rats received oral administration of CLO, OLA, or vehicle for 45 days. They were evaluated for body mass composition and weight gain, blood glucose parameters (fasting and glucose tolerance and insulin resistance tests), and lipid profile (HDL, total cholesterol, and triglycerides). In a second set of experiments, the same measurements were performed in female rats exposed to the antipsychotics for 45 days and ligature-induced periodontitis on the 30th day of treatment. Macroscopic measurements of exposed roots, microtomography in the furcation region of the first molar, and histological evaluation of the region between the first and second molars were evaluated to assess bone loss. Additionally, gingival measurements of myeloperoxidase activity and pro-inflammatory cytokine TNF-α were made. RESULTS: Only females exposed to OLA had more significant weight gain than controls. They also exhibited differences in glucose metabolism. Ligature-induced periodontitis produced intense bone retraction without changing the density of the remaining structures. The bone loss was even higher in rats with periodontitis treated with OLA or CLO and was accompanied by a local increase in TNF-α caused by CLO. These animals, however, did not exhibit the same metabolic impairments observed for animals without periodontitis. CONCLUSION: The use of clozapine and olanzapine may be a risk factor for periodontal disease, independent of systemic metabolic alterations.
Asunto(s)
Antipsicóticos , Enfermedades Óseas Metabólicas , Clozapina , Periodontitis , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Antipsicóticos/efectos adversos , Clozapina/efectos adversos , Olanzapina/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Periodontitis/complicaciones , Enfermedades Óseas Metabólicas/inducido químicamente , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Aumento de PesoRESUMEN
ABSTRACT Objective: this research objective was to develop a new peritoneal adhesion animal model that would lead to adhesions formation in all operated animals, simple and reproducible, associated with maintenance the animal's health. Methods: eighteen adult male Wistar rats (Rattus norvegicus) were randomly distributed into three groups: Control Group (anatomical and clinical parameters), Sham Group (delicate manipulation of the stomach and exposure of the peritoneal cavity to ambient air) and Surgery Group (gastrotomy followed by gastrorrhaphy). The animals were analyzed and classificated macroscopically according to two adhesion classification models and differences between groups were considered significant when p<0.05. Results: the six animals in the control group had no peritoneal adhesions, three of the six animals in the sham group had focal peritoneal adhesions, and all animals in the surgery group (gastrotomy followed by gastrorraphy) had firm peritoneal adhesions. All adhesions found were macroscopically quantified and microscopically confirmed, without carrying out a microscopic classification of the adhesions. Conclusion: the new model developed of gastrotomy followed by gastrorrhaphy, proved to be safe and efficient to induce and study peritoneal adhesions.
RESUMO Objetivo: o objetivo deste estudo foi criar um novo modelo animal de indução de aderências peritoneais capaz de levar à formação de aderências em todos os animais operados, simples e reprodutível, associado a manutenção da saúde dos animais. Métodos: Dezoito ratos machos, adultos, da linhagem Wistar (Rattus norvegicus) foram distribuídos aleatoriamente em três grupos: Grupo Controle (parâmetro anatômico e clínico), Grupo Sham (manipulação delicada do estômago e exposição de cavidade peritoneal ao ar ambiente) e Grupo Cirurgia (gastrotomia seguida de gastrorrafia). Os animais foram submetidos à análise e classificação macroscópicas, seguindo dois modelos de classificação de aderências. As diferenças entre os grupos foram consideradas estatisticamente significantes se p<0,05. Resultados: os seis animais do grupo controle não apresentavam aderências peritoneais, três dos seis animais do grupo sham apresentavam aderências peritoneais focais e todos os seis animais do grupo cirurgia (gastrotomia seguida de gastrorrafia) apresentavam aderências peritoneais firmes. Todas as aderências encontradas foram quantificadas macroscopicamente e confirmadas microscopicamente, sem a realização de classificação microscópica das aderências. Conclusão: o novo modelo desenvolvido, de gastrotomia seguida de gastrorrafia, mostrou-se seguro e eficiente para induzir e estudar aderências peritoneais.
RESUMEN
Random electrospun three-dimensional fiber membranes mimic the extracellular matrix and the interfibrillar spaces promotes the flow of nutrients for cells. Electrospun PLGA membranes were analyzed in vitro and in vivo after being sterilized with gamma radiation and bioactivated with fibronectin or collagen. Madin-Darby Canine Kidney (MDCK) epithelial cells and primary fibroblast-like cells from hamster's cheek paunch proliferated over time on these membranes, evidencing their good biocompatibility. Cell-free irradiated PLGA membranes implanted on the back of hamsters resulted in a chronic granulomatous inflammatory response, observed after 7, 15, 30 and 90 days. Morphological analysis of implanted PLGA using light microscopy revealed epithelioid cells, Langhans type of multinucleate giant cells (LCs) and multinucleated giant cells (MNGCs) with internalized biomaterial. Lymphocytes increased along time due to undegraded polymer fragments, inducing the accumulation of cells of the phagocytic lineage, and decreased after 90 days post implantation. Myeloperoxidase+ cells increased after 15 days and decreased after 90 days. LCs, MNGCs and capillaries decreased after 90 days. Analysis of implanted PLGA after 7, 15, 30 and 90 days using transmission electron microscope (TEM) showed cells exhibiting internalized PLGA fragments and filopodia surrounding PLGA fragments. Over time, TEM analysis showed less PLGA fragments surrounded by cells without fibrous tissue formation. Accordingly, MNGC constituted a granulomatous reaction around the polymer, which resolves with time, probably preventing a fibrous capsule formation. Finally, this study confirms the biocompatibility of electrospun PLGA membranes and their potential to accelerate the healing process of oral ulcerations in hamsters' model in association with autologous cells.
RESUMEN
The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.
RESUMEN
Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.
Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Humanos , Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Factores de Transcripción , Organización Mundial de la SaludRESUMEN
Microcystin-LR (MC-LR) is a potent cyanotoxin that can reach several organs. However subacute exposure to sublethal doses of MC-LR has not yet well been studied. Herein, we evaluated the outcomes of subacute and sublethal MC-LR exposure on lungs. Male BALB/c mice were exposed to MC-LR by gavage (30 µg/kg) for 20 consecutive days, whereas CTRL mice received filtered water. Respiratory mechanics was not altered in MC-LR group, but histopathology disclosed increased collagen deposition, immunological cell infiltration, and higher percentage of collapsed alveoli. Mitochondrial function was extensively affected in MC-LR animals. Additionally, a direct in vitro titration of MC-LR revealed impaired mitochondrial function. In conclusion, MC-LR presented an intense deleterious effect on lung mitochondrial function and histology. Furthermore, MC-LR seems to exert an oligomycin-like effect in lung mitochondria. This study opens new perspectives for the understanding of the putative pulmonary initial mechanisms of damage resulting from oral MC-LR intoxication.
Asunto(s)
Microcistinas , Mitocondrias , Animales , Ingestión de Alimentos , Pulmón , Masculino , Toxinas Marinas , Ratones , Microcistinas/metabolismo , Microcistinas/toxicidad , Oligomicinas/metabolismo , Oligomicinas/farmacologíaRESUMEN
BACKGROUND: Obesity is considered a condition of systemic chronic inflammation. Under this condition, adipose tissue macrophages switch from an M2 (anti-inflammatory) activation pattern to an M1 (proinflammatory) activation pattern. OBJECTIVE: The study aimed to verify the profile of skin macrophage activation after bariatric surgery as well as the role of MMP-1 in extracellular tissue remodeling. METHODS: This is a prospective, controlled and comparative study with 20 individuals split into two groups according to their skin condition: post-bariatric and eutrophic patients. Histological and morphometric analyses based on hematoxylin-eosin, picrosirius red (collagen), orcein (elastic fiber systems), and alcian blue (mast cells)-stained sections and immunohistochemical analysis (CD68, iNOS, and mannose receptor) for macrophages and metalloproteinase-1 were performed. RESULTS: Post-bariatric skin showed an increase in inflammation, angiogenesis, CD68, M1 macrophages (P< 0.001), and mast cells (P< 0.01); a decrease in M2 macrophages (P< 0.01); and a significant decrease in the collagen fiber network (P< 0.001). MMP-1 was increased in the papillary dermis of post-bariatric skin and decreased in the epidermis compared to eutrophic skin (P< 0.05). CONCLUSION: This study shows that post-bariatric skin maintains inflammatory characteristics for two years. Mast cells and M1 macrophages maintain and enhance the remodeling of the dermal extracellular matrix initiated during obesity in part due to the presence of MMP-1 in the papillary dermis. EBM LEVEL IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Asunto(s)
Cirugía Bariátrica , Bariatria , Cirugía Bariátrica/efectos adversos , Humanos , Macrófagos , Estudios Prospectivos , PielRESUMEN
Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.
Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Neoplasias de la Próstata/genética , Células A549 , Animales , Astrocitos/química , Astrocitos/citología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Regulación hacia ArribaRESUMEN
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, who often have some inflammatory condition and, therefore, end up using glucocorticoids, such as dexamethasone and methylprednisolone. Although the effects of this class of molecules during cryptococcosis have been investigated, their consequences for the biology of C. neoformans is less explored. Here, we studied the effects of dexamethasone and methylprednisolone on the metabolism and on the induction of virulence factors in C. neoformans. Our results showed that both glucocorticoids increased fungal cell proliferation and surface electronegativity but reduced capsule and secreted polysaccharide sizes, as well as capsule compaction, by decreasing the density of polysaccharide fibers. We also tested whether glucocorticoids could affect the fungal virulence in Galleria mellonella and mice. Although the survival rate of Galleria larvae increased, those from mice showed a tendency to decrease, with infected animals dying earlier after glucocorticoid treatments. The pathogenesis of spread of cryptococcosis and the interleukin secretion pattern were also assessed for lungs and brains of infected mice. While increases in the spread of the fungus to lungs were observed after treatment with glucocorticoids, a significant difference in brain was observed only for methylprednisolone, although a trend toward increasing was also observed for dexamethasone. Moreover, increases in both pulmonary and cerebral IL-10 production, reduction of IL-6 production but no changes in IL-4, IL-17, and INF-γ were also observed after glucocorticoid treatments. Finally, histopathological analysis confirmed the increase in number of fungal cells in lung and brain tissues of mice previously subjected to dexamethasone or methylprednisolone treatments. Together, our results provide compelling evidence for the effects of dexamethasone and methylprednisolone on the biology of C. neoformans and may have important implications for future clinical treatments, calling attention to the risks of using these glucocorticoids against cryptococcosis or in immunocompromised individuals.
RESUMEN
Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 µg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.
Asunto(s)
Alcaloides/toxicidad , Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Animales , Toxinas de Cianobacterias , Hígado , Pulmón , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Función RespiratoriaRESUMEN
C60 fullerene (C60) nanoparticles, a nanomaterial widely used in technology, can offer risks to humans, overcome biological barriers, and deposit onto the lungs. However, data on its putative pulmonary burden are scanty. Recently, the C60 interaction with mitochondria has been described in vitro and in vivo. We hypothesized that C60 impairs lung mechanics and mitochondrial function. Thirty-five male BALB/c mice were randomly divided into two groups intratracheally instilled with vehicle (0.9% NaCl + 1% Tween 80, CTRL) or C60 (1.0 mg/kg, FUL). Twenty-four hours after exposure, 15 FUL and 8 CTRL mice were anesthetized, paralyzed, and mechanically ventilated for the determination of lung mechanics. After euthanasia, the lungs were removed en bloc at end-expiration for histological processing. Lung tissue elastance and viscance were augmented in FUL group. Increased inflammatory cell number, alveolar collapse, septal thickening, and pulmonary edema were detected. In other six FUL and six CTRL mice, mitochondria expressed reduction in state 1 respiration [FUL = 3.0 ± 1.14 vs. CTRL = 4.46 ± 0.9 (SEM) nmol O2/min/mg protein, p = 0.0210], ATP production (FUL = 122.6 ± 18 vs. CTRL = 154.5 ± 14 µmol/100 µg protein, p = 0.0340), and higher oxygen consumption in state 4 [FUL = 12.56 ± 0.9 vs. CTRL = 8.26 ± 0.6], generation of reactive oxygen species (FUL 733.1 ± 169.32 vs. CTRL = 486.39 ± 73.1 nmol/100 µg protein, p = 0.0313) and reason ROS/ATP [FUL = 8.73 ± 2.3 vs. CTRL = 2.99 ± 0.3]. In conclusion, exposure to fullerene C60 impaired pulmonary mechanics and mitochondrial function, increased ROS concentration, and decrease ATP production.
Asunto(s)
Fulerenos/toxicidad , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nanopartículas/toxicidad , Animales , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Función RespiratoriaRESUMEN
Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-inflammatory cytokines (i.e., IL-1ß) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7-/-) mice. The oxidative stress in the liver of septic mice was assessed by 2',7'-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive substances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT) and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of inflammatory cytokines and chemokines by RT-qPCR. We observed an increase in the reactive species and lipid peroxidation in the liver of septic WT mice, but not in the liver from P2X7-/- animals. We found an imbalance SOD/CAT ratio, also only WT septic animals. The number of inflammatory cells and the gene expression of IL-1 ß, IL-6, TNF-α, IL-10, CXCL1, and CXCL2 were higher in the liver of WT septic mice in comparison to P2X7-/- septic animals. In summary, our results suggest that the P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.
Asunto(s)
Hepatopatías/metabolismo , Estrés Oxidativo/fisiología , Receptores Purinérgicos P2X7/metabolismo , Sepsis/metabolismo , Sepsis/patología , Animales , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
BACKGROUND: Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. METHODS: We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-ß1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1ß, procollagens type I, III, and IV) for mRNA quantification. RESULTS: The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- ß1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1ß mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1ß mRNAs, as well as less immunoreactivity of HSP-47, TGF-ß, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. CONCLUSION: BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Riñón/patología , Nefritis/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Colorantes de Rosanilina/uso terapéutico , Obstrucción Ureteral/complicaciones , Actinas/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Colágeno Tipo IV/genética , Fibrosis , Proteínas del Choque Térmico HSP47/metabolismo , Interleucina-1beta/genética , Riñón/metabolismo , Túbulos Renales/patología , Macrófagos/fisiología , Masculino , Miofibroblastos/fisiología , Nefritis/etiología , Antagonistas del Receptor Purinérgico P2X/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Colorantes de Rosanilina/farmacología , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia ArribaRESUMEN
Silicosis is an occupational lung disease caused by inhalation of silica particles. It is characterized by intense lung inflammation, with progressive and irreversible fibrosis, leading to impaired lung function. Purinergic signaling modulates silica-induced lung inflammation and fibrosis through P2X7 receptor. In the present study, we investigate the role of P2Y12, the G-protein-coupled subfamily prototype of P2 receptor class in silicosis. To that end, BALB/c mice received an intratracheal injection of PBS or silica particles (20 mg), without or with P2Y12 receptor blockade by clopidogrel (20 mg/kg body weight by gavage every 48 h) - groups CTRL, SIL, and SIL + Clopi, respectively. After 14 days, lung mechanics were determined by the end-inflation occlusion method. Lung histology was analyzed, and lung parenchyma production of nitric oxide and cytokines (IL-1ß, IL-6, TNF-α, and TGF-ß) were determined. Silica injection reduced animal survival and increased all lung mechanical parameters in relation to CTRL, followed by diffuse lung parenchyma inflammation, increased neutrophil infiltration, collagen deposition and increased pro-inflammatory and pro-fibrogenic cytokine secretion, as well as increased nitrite production. Clopidogrel treatment prevented silica-induced changes in lung function, and significantly reduced lung inflammation, fibrosis, as well as cytokine and nitrite production. These data suggest that inhibition of P2Y12 signaling improves silica-induced lung inflammation, preventing lung functional changes and mortality. Our results corroborate previous observations of silica-induced lung changes and expand the understanding of purinergic signaling in this process.
RESUMEN
Despite being considered present in most vascularised tissues, lymphatic vessels have not been properly shown in human adipose tissue (AT). Our goal in this study is to investigate an unanswered question in AT biology, regarding lymphatic network presence in tissue parenchyma. Using human subcutaneous (S-) and visceral (V-) AT samples with whole mount staining for lymphatic specific markers and three-dimensional imaging, we showed lymphatic capillaries and larger lymphatic vessels in the human VAT. Conversely, in the human SAT, microcirculatory lymphatic vascular structures were rarely detected and no initial lymphatics were found.