Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(1): 28-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171777

RESUMEN

Pyroptosis is a form of regulated cell death that promotes inflammation; it attracts much attention because its dysregulation leads to various inflammatory diseases. To help explore the precise mechanisms by which pyroptosis is regulated, in this study, we searched for chemical compounds that inhibit pyroptosis. From our original compound library, we identified azalamellarin N (AZL-N), a hexacyclic pyrrole alkaloid, as an inhibitor of pyroptosis induced by R837 (also called imiquimod), which is an agonist of the intracellular multiprotein complex nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, whereas the effect of AZL-N on R837-induced pyroptosis was relatively weak, AZL-N strongly inhibited pyroptosis induced by extracellular ATP or nigericin, which are different types of NLRP3 inflammasome agonists. This was in contrast with the results that MCC950, a well-established NLRP3 inhibitor, consistently inhibited pyroptosis irrespective of the type of stimulus. We also found that AZL-N inhibited activation of caspase-1 and apoptosis-associated speck-like proteins containing a caspase activation and recruitment domain (ASC), which are components of the NLRP3 inflammasome. Analysis of the structure-activity relationship revealed that a lactam ring of AZL-N, which has been shown to contribute to the strong binding of AZL-N to its known target protein kinases, is required for its inhibitory effects on pyroptosis. These results suggest that AZL-N inhibits pyroptosis by targeting molecule(s), which may be protein kinase(s), that act upstream of NLRP3 inflammasome activation, rather than by directly targeting the components of the NLRP3 inflammasome. Further identification and analysis of target molecule(s) of AZL-N will shed light on the regulatory mechanisms of pyroptosis, particularly those depending on proinflammatory stimuli.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Piroptosis , Imiquimod , Apoptosis , Caspasa 1/metabolismo , Proteínas Quinasas , Interleucina-1beta/metabolismo
2.
Genes Dev ; 35(21-22): 1431-1444, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34675062

RESUMEN

During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners-Sox11 for neurogenic and Sox8 for astrocytic differentiation-that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.


Asunto(s)
Células-Madre Neurales , Encéfalo , Diferenciación Celular/genética , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neurogénesis/genética , Embarazo , Factores de Transcripción SOXE/genética
3.
Pharmacol Res Perspect ; 9(6): e00749, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34677001

RESUMEN

The brain consists of three major cell types: neurons and two glial cell types (astrocytes and oligodendrocytes). Although they are generated from common multipotent neural stem/precursor cells (NS/PCs), embryonic NS/PCs cannot generate all of the cell types at the beginning of brain development. NS/PCs first undergo extensive self-renewal to expand their pools, and then acquire the potential to produce neurons, followed by glial cells. Astrocytes are the most frequently found cell type in the central nervous system (CNS), and play important roles in brain development and functions. Although it has been shown that nuclear factor IA (Nfia) is a pivotal transcription factor for conferring gliogenic potential on neurogenic NS/PCs by sequestering DNA methyltransferase 1 (Dnmt1) from astrocyte-specific genes, direct targets of Nfia that participate in astrocytic differentiation have yet to be completely identified. Here we show that SRY-box transcription factor 8 (Sox8) is a direct target gene of Nfia at the initiation of the gliogenic phase. We found that expression of Sox8 augmented leukemia inhibitory factor (LIF)-induced astrocytic differentiation, while Sox8 knockdown inhibited Nfia-enhanced astrocytic differentiation of NS/PCs. In contrast to Nfia, Sox8 did not induce DNA demethylation of an astrocyte-specific marker gene, glial fibrillary acidic protein (Gfap), but instead associated with LIF downstream transcription factor STAT3 through transcriptional coactivator p300, explaining how Sox8 expression further facilitated LIF-induced Gfap expression. Taken together, these results suggest that Sox8 is a crucial Nfia downstream transcription factor for the astrocytic differentiation of NS/PCs in the developing brain.


Asunto(s)
Astrocitos/citología , Factores de Transcripción NFI/genética , Células-Madre Neurales/citología , Factores de Transcripción SOXE/genética , Animales , Diferenciación Celular , Células Cultivadas , Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Endogámicos ICR , Neurogénesis/fisiología , Neuronas/citología
4.
Neuroscience ; 379: 45-66, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29518531

RESUMEN

The mitotic activity of certain tissues in the body is closely associated with circadian clock function. However, the effects of growth factors on the molecular clockwork are not fully understood. Stimulation of neural stem cells (NSCs) with epidermal growth factor (EGF), a well-known mitogen, is known to cause synchronized cell cycle progression with a period of approximately 24 h, closely associated with the Per2 gene expression rhythm. Here, we examined the effects of EGF on the molecular clockwork of NSCs. Treatment of cultured NSCs derived from embryonic mouse forebrain with EGF (20 ng/mL) caused a phase shift in the PER2::LUCIFERASE bioluminescence rhythm in a stimulation time-dependent manner. The EGF phase-response curve differed from that of forskolin (FK)-a well-known chemical resetting stimulus-both in the advance/delay ratio and stimulation time-dependency. PCR array analysis followed by quantitative PCR validation demonstrated that EGF treatment transiently induced multiple clock-related genes including Per1, Per2, Dec1, e4bp4, and Noct, whereas FK treatment induced a limited number of genes (Per1 and Dec1), suggesting that the mode of entrainment of NSC molecular clock was different for EGF and FK. EGF led to gene induction in the presence of cycloheximide, suggesting that de novo protein synthesis is unnecessary. Pretreatment with the MEK1/2 inhibitor U0126 significantly suppressed the acute induction of Per2, Dec1, and Noct by EGF and also abolished the EGF-induced phase shift of the PER2::LUCIFERASE rhythm in NSCs. These results suggest a unique effect of EGF on the molecular clockwork of NSCs.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Células-Madre Neurales/metabolismo , Animales , Butadienos/farmacología , Proteínas CLOCK/genética , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Dexametasona/farmacología , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Glucocorticoides/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Nitrilos/farmacología , ARN Mensajero/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo
5.
Cell Biol Toxicol ; 34(6): 425-440, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29383547

RESUMEN

Neural stem cells (NSCs) undergo self-renewal and generate neurons and glial cells under the influence of specific signals from surrounding environments. Glioblastoma multiforme (GBM) is a highly lethal brain tumor arising from NSCs or glial precursor cells owing to dysregulation of transcriptional and epigenetic networks that control self-renewal and differentiation of NSCs. Highly tumorigenic glioblastoma stem cells (GSCs) constitute a small subpopulation of GBM cells, which share several characteristic similarities with NSCs. GSCs exist atop a stem cell hierarchy and generate heterogeneous populations that participate in tumor propagation, drug resistance, and relapse. During multimodal treatment, GSCs de-differentiate and convert into cells with malignant characteristics, and thus play critical roles in tumor propagation. In contrast, differentiation therapy that induces GBM cells or GSCs to differentiate into a neuronal or glial lineage is expected to inhibit their proliferation. Since stem cell differentiation is specified by the cells' epigenetic status, understanding their stemness and the epigenomic situation in the ancestor, NSCs, is important and expected to be helpful for developing treatment modalities for GBM. Here, we review the current findings regarding the epigenetic regulatory mechanisms of NSC fate in the developing brain, as well as those of GBM and GSCs. Furthermore, considering the similarities between NSCs and GSCs, we also discuss potential new strategies for GBM treatment.


Asunto(s)
Epigénesis Genética/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Diferenciación Celular/genética , Proliferación Celular , Glioblastoma/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células-Madre Neurales/fisiología , Neuronas/patología , Transducción de Señal , Transcripción Genética/fisiología
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(6): 386-398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603210

RESUMEN

In the developing brain, the three major cell types, i.e., neurons, astrocytes and oligodendrocytes, are generated from common multipotent neural stem cells (NSCs). In particular, astrocytes eventually occupy a great fraction of the brain and play pivotal roles in the brain development and functions. However, NSCs cannot produce the three major cell types simultaneously from the beginning; e.g., it is known that neurogenesis precedes astrogenesis during brain development. How is this fate switching achieved? Many studies have revealed that extracellular cues and intracellular programs are involved in the transition of NSC fate specification. The former include growth factor- and cytokine-signaling, and the latter involve epigenetic machinery, including DNA methylation, histone modifications, and non-coding RNAs. Accumulating evidence has identified a complex array of epigenetic modifications that control the timing of astrocytic differentiation of NSCs. In this review, we introduce recent progress in identifying the molecular mechanisms of astrogenesis underlying the tight regulation of neuronal-astrocytic fate switching of NSCs.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Diferenciación Celular , Células-Madre Neurales/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/genética , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Código de Histonas , Humanos , Mamíferos , Células-Madre Neurales/química , Neuronas/química , Neuronas/metabolismo , ARN no Traducido , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...