Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 23(13): 3349-61, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24488768

RESUMEN

GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expression pattern of the zebrafish gne gene and have shown that it is highly conserved compared with the human ortholog. We also show the deposition of maternal gne mRNA and maternal GNE protein at the earliest embryonic stage, emphasizing the critical role of gne in embryonic development. Injection of morpholino (MO)-modified antisense oligonucleotides specifically designed to knockdown gne, into one-cell embryos lead to a variety of phenotypic severity. Characterization of the gne knockdown morphants showed a significantly reduced locomotor activity as well as distorted muscle integrity, including a reduction in the number of muscle myofibers, even in mild or intermediate phenotype morphants. These findings were further confirmed by electron microscopy studies, where large gaps between sarcolemmas were visualized, although normal sarcomeric structures were maintained. These results demonstrate a critical novel role for gne in embryonic development and particularly in myofiber development, muscle integrity and activity.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Humanos , Microscopía Electrónica , Complejos Multienzimáticos/genética , Mutación , Oligonucleótidos Antisentido/genética , Pez Cebra , Proteínas de Pez Cebra/genética
2.
Neuromolecular Med ; 16(2): 322-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24264357

RESUMEN

GNE myopathy is a rare neuromuscular autosomal recessive disease, resulting from mutations in the gene UDP N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). The most frequent mutation is the single homozygous missense mutation, M712T-the Middle Eastern mutation-located ten amino acids before the end of the protein. We have used an adeno-associated virus (AAV)-based trans-splicing (TS) vector as a gene therapy tool to overcome this mutation by replacing the mutated last exon of GNE by the wild-type exon while preserving the natural endogenous regulatory machinery. We have designed relevant plasmids directed either to mouse or to human GNE. Following transfection of C2C12 murine muscle cells with the mouse TS vectors, we have been able to detect by nested RT-PCR trans-spliced molecules carrying the wild-type exon 12 of GNE. Similarly, transfection of HEK293 human cells with the human-directed TS vectors resulted in the generation of trans-spliced human GNE RNA molecules. Furthermore, infection of primary muscle cells from a GNE myopathy patient carrying the homozygous M712T mutation, with an AAV8-based viral vector carrying a human-directed TS construct, resulted in the generation of wild-type GNE transcripts in addition to the mutated ones. These studies provide a proof of concept that the TS approach could be used to partially correct the Middle Eastern mutation in GNE myopathy patients. These results provide the basis for in vivo research in animal models using the AAV platform with TS plasmids as a potential genetic therapy for GNE myopathy.


Asunto(s)
Miopatías Distales/terapia , Terapia Genética , Vectores Genéticos/uso terapéutico , Complejos Multienzimáticos/genética , Mutación Missense , Mutación Puntual , Empalme del ARN , Animales , Línea Celular , Dependovirus/genética , Miopatías Distales/genética , Exones/genética , Genes Recesivos , Humanos , Irán/etnología , Judíos/genética , Ratones , Células Musculares/metabolismo , Cultivo Primario de Células , Precursores del ARN/genética , Recombinación Genética , Empalmosomas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...