Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 246-247: 153133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065920

RESUMEN

Reports on the effect of nitric oxide (NO) or reactive oxygen species (ROS) on photosynthesis and respiration in leaf tissues are intriguing; therefore, the effects of exogenous addition of sodium nitroprusside (SNP, releases NO) or H2O2 on the photosynthetic O2 evolution and respiratory O2 uptake by mesophyll protoplasts in pea (Pisum sativum) were evaluated in the present study. Low concentrations of SNP or H2O2 were used to minimize nonspecific effects. The effects of NO or H2O2 on respiration and photosynthesis were different. The presence of NO decreased the rate of photosynthesis but caused a marginal stimulation of dark respiration. Conversely, externally administered H2O2 drastically decreased the rate of respiration but only slightly decreased photosynthesis. The PS I activity was more sensitive to NO than PS II. On the other hand, 100 µM H2O2 had no effect on the photochemical reactions of either PS I or PS II. The sensitivity of photosynthesis to antimycin A or SHAM (reflecting the interplay between chloroplasts and mitochondria) was not affected by NO. By contrast, H2O2 markedly decreased the sensitivity of photosynthesis to antimycin A and SHAM. It can be concluded that chloroplasts are the primary targets of NO, while mitochondria are the primary targets of ROS in plant cells. We propose that H2O2 can be an important signal to modulate the crosstalk between chloroplasts and mitochondria.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Nitroprusiato/metabolismo , Fotosíntesis , Pisum sativum/fisiología , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/administración & dosificación , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/fisiología , Óxido Nítrico/administración & dosificación , Nitroprusiato/administración & dosificación , Pisum sativum/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Protoplastos/efectos de los fármacos , Protoplastos/fisiología , Especies Reactivas de Oxígeno/administración & dosificación
2.
Photosynth Res ; 117(1-3): 61-71, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23881384

RESUMEN

The bioenergetic processes of photosynthesis and respiration are mutually beneficial. Their interaction extends to photorespiration, which is linked to optimize photosynthesis. The interplay of these three pathways is facilitated by two major phenomena: sharing of energy/metabolite resources and maintenance of optimal levels of reactive oxygen species (ROS). The resource sharing among different compartments of plant cells is based on the production/utilization of reducing equivalents (NADPH, NADH) and ATP as well as on the metabolite exchange. The responsibility of generating the cellular requirements of ATP and NAD(P)H is mostly by the chloroplasts and mitochondria. In turn, besides the chloroplasts, the mitochondria, cytosol and peroxisomes are common sinks for reduced equivalents. Transporters located in membranes ensure the coordinated movement of metabolites across the cellular compartments. The present review emphasizes the beneficial interactions among photosynthesis, dark respiration and photorespiration, in relation to metabolism of C, N and S. Since the bioenergetic reactions tend to generate ROS, the cells modulate chloroplast and mitochondrial reactions, so as to ensure that the ROS levels do not rise to toxic levels. The patterns of minimization of ROS production and scavenging of excess ROS in intracellular compartments are highlighted. Some of the emerging developments are pointed out, such as model plants, orientation/movement of organelles and metabolomics.


Asunto(s)
Redes y Vías Metabólicas , Orgánulos/metabolismo , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Energético , Células Vegetales/metabolismo
3.
J Exp Bot ; 63(3): 1445-59, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22140244

RESUMEN

The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C(3) plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck-Halliwell-Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants.


Asunto(s)
Arabidopsis/metabolismo , Malato-Deshidrogenasa (NADP+)/genética , Estrés Oxidativo/fisiología , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...