Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(10): 3813-3822, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39483220

RESUMEN

The conventional energy transfer pathway in organic lanthanide complexes is purported to be from the excited singlet state of the chromophore to the triplet state and subsequently directly to the emitting state of the trivalent lanthanide ion. In this work, we found that the energy transfer occurs from the triplet state to the nearest energy level, instead of directly to the emitting state of the lanthanide ion. The triplet decay rate for different lanthanide ions follows an energy gap law from the triplet level to the receiving level of the lanthanide ion. Three different categories of complexes were synthesized and inspected using different techniques, demonstrating the universality of our findings. This work renews the insights to conventional findings, highlighting the importance of the energy gap between the triplet state and the nearest lanthanide energy level in optimization of light harvesting. The rationale of ligand design of chromophores should be reconsidered, leading to various applications of lanthanide complexes with enhanced quantum yield and brightness.

2.
Small Methods ; : e2400006, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593368

RESUMEN

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.

3.
Chem Asian J ; 18(17): e202300562, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489571

RESUMEN

A water-soluble 1,2,4,5-tetrazine-substituted carbon-dipyrromethene (C-DIPY) was synthesized from the previously reported carbonyl pyrrole dimer through a two-step procedure. Owing to the presence of a tetrazine moiety, the fluorescence emission of this compound was largely quenched in phosphate-buffered saline at pH 7.4. Upon addition of a bicyclo[6.1.0]non-4-yne (BCN) derivative, the tetrazine-based quenching component of the compound was disrupted through the inverse electron-demand Diels-Alder reaction to restore the fluorescence in up to 6.6-fold. This bioorthogonal activation was also demonstrated using U-87 MG human glioblastoma cells, in which the fluorescence intensity of this C-DIPY could be enhanced by 8.7-fold upon post-incubation with the BCN derivative. The results showed that this tetrazine-caged C-DIPY can serve as a bioorthogonally activatable fluorescent probe for bioimaging. The compound, however, was found to reside preferentially in the lysosomes instead of the mitochondria of the cells as predicted based on its cationic character, which could be attributed to its energy-dependent endocytic cellular uptake pathway, for which lysosomes are the end station.


Asunto(s)
Colorantes Fluorescentes , Compuestos Heterocíclicos , Humanos , Colorantes Fluorescentes/química , Reacción de Cicloadición , Porfobilinógeno
4.
J Am Chem Soc ; 145(13): 7361-7375, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961946

RESUMEN

An advanced photodynamic molecular beacon (PMB) was designed and synthesized, in which a distyryl boron dipyrromethene (DSBDP)-based photosensitizer and a Black Hole Quencher 3 moiety were connected via two peptide segments containing the sequences PLGVR and GFLG, respectively, of a cyclic peptide. These two short peptide sequences are well-known substrates of matrix metalloproteinase-2 (MMP-2) and cathepsin B, respectively, both of which are overexpressed in a wide range of cancer cells either extracellularly (for MMP-2) or intracellularly (for cathepsin B). Owing to the efficient Förster resonance energy transfer between the two components, this PMB was fully quenched in the native form. Only upon interaction with both MMP-2 and cathepsin B, either in a buffer solution or in cancer cells, both of the segments were cleaved specifically, and the two components could be completely separated, thereby restoring the photodynamic activities of the DSBDP moiety. This PMB could also be activated in tumors, and it effectively suppressed the tumor growth in A549 tumor-bearing nude mice upon laser irradiation without causing notable side effects. In particular, it did not cause skin photosensitivity, which is a very common side effect of photodynamic therapy (PDT) using conventional "always-on" photosensitizers. The overall results showed that this "double-locked" PMB functioned as a biological AND logic gate that could only be unlocked by the coexistence of two tumor-associated enzymes, which could greatly enhance the tumor specificity in PDT.


Asunto(s)
Fotoquimioterapia , Ratones , Animales , Metaloproteinasa 2 de la Matriz , Catepsina B , Ratones Desnudos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Péptidos/química
5.
Chemistry ; 28(57): e202201652, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35852020

RESUMEN

A multifunctional photodynamic molecular beacon (PMB) has been designed and synthesized which contains an epidermal growth factor receptor (EGFR)-targeting cyclic peptide and a trimeric phthalocyanine skeleton in which the three zinc(II) phthalocyanine units are each substituted with a glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS) quencher and are linked via two cathepsin B-cleavable GFLG peptide chains. This tailor-made conjugate is fully quenched in the native form due to the photoinduced electron transfer effect of the DNBS moieties and the self-quenching of the phthalocyanine units. It can target the EGFR overexpressed in cancer cells, and after receptor-mediated endocytosis, it can be activated selectively by the co-existence of intracellular GSH and cathepsin B, both of which are also overproduced in cancer cells, in terms of fluorescence emission and singlet oxygen generation. The cell-selective behavior of this PMB has been demonstrated using a range of cancer cells with different expression levels of EGFR, while the stimuli-responsive properties have been studied both in vitro and in various aqueous media. The overall results show that this advanced PMB, which exhibits several levels of control of the tumor specificity, is a promising photosensitizer for precise antitumoral photodynamic therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Catepsina B/uso terapéutico , Línea Celular Tumoral , Dinitrofluorobenceno/análogos & derivados , Receptores ErbB , Glutatión/química , Humanos , Indoles/química , Neoplasias/patología , Péptidos/uso terapéutico , Péptidos Cíclicos/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/química
6.
J Med Chem ; 64(23): 17455-17467, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34846143

RESUMEN

Two dual stimuli-activated photosensitizers were developed, in which two or three glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS)-substituted zinc(II) phthalocyanine units were connected via one or two cathepsin B-cleavable Gly-Phe-Leu-Gly peptide linker(s). These dimeric and trimeric phthalocyanines were fully quenched in the native form due to the photoinduced electron transfer to the DNBS substituents and the self-quenching of the phthalocyanine units. In the presence of GSH and cathepsin B, or upon internalization into A549 and HepG2 cancer cells, these probes were activated through the release of free phthalocyanine units. The intracellular fluorescence intensity was increased upon post-incubation with GSH ester or reduced upon pre-treatment with a cathepsin B inhibitor. Upon light irradiation, these photosensitizers became highly cytotoxic with IC50 values of 0.21-0.39 µM. The photocytotoxicity was also dependent on the intracellular GSH and cathepsin B levels. The results showed that these conjugates could serve as smart photosensitizers for targeted photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Biopolímeros/metabolismo , Catepsina B/metabolismo , Glutatión/metabolismo , Isoindoles/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Fluorescencia , Humanos
7.
Org Biomol Chem ; 18(28): 5400-5405, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32618315

RESUMEN

The synthesis and use of oxetane modified dipeptide building blocks in solution and solid-phase peptide synthesis (SPPS) is reported. The preparation of building blocks containing non-glycine residues at the N-terminus in a stereochemically controlled manner is challenging. Here, a practical 4-step route to such building blocks is demonstrated, through the synthesis of dipeptides containing contiguous alanine residues. The incorporation of these new derivatives at specific sites along the backbone of an alanine-rich peptide sequence containing eighteen amino acids is demonstrated via solid-phase peptide synthesis. Additionally, new methods to enable the incorporation of all 20 of the proteinogenic amino acids into such dipeptide building blocks are reported through modifications of the synthetic route (for Cys and Met) and by changes to the protecting group strategy (for His, Ser and Thr).


Asunto(s)
Dipéptidos/antagonistas & inhibidores , Dipéptidos/síntesis química , Desarrollo de Medicamentos , Éteres Cíclicos/farmacología , Técnicas de Síntesis en Fase Sólida , Dipéptidos/química , Éteres Cíclicos/síntesis química , Éteres Cíclicos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...