Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37242335

RESUMEN

Approximately 51 million individuals suffer from lymphatic filariasis (LF) caused mainly by the filarial worm Wuchereria bancrofti. Mass drug administration (MDA) programs led to a significant reduction in the number of infected individuals, but the consequences of the treatment and clearance of infection in regard to host immunity remain uncertain. Thus, this study investigates the composition of myeloid-derived suppressor cells (MDSCs), macrophage subsets and innate lymphoid cells (ILCs), in patent (circulating filarial antigen (CFA)+ microfilariae (MF)+) and latent (CFA+MF-) W. bancrofti-infected individuals, previously W. bancrofti-infected (PI) individuals cured of the infection due to MDA, uninfected controls (endemic normal (EN)) and individuals who suffer from lymphoedema (LE) from the Western Region of Ghana. Frequencies of ILC2 were significantly reduced in W. bancrofti-infected individuals, while the frequencies of MDSCs, M2 macrophages, ILC1 and ILC3 were comparable between the cohorts. Importantly, clearance of infection due to MDA restored the ILC2 frequencies, suggesting that ILC2 subsets might migrate to the site of infection within the lymphatic tissue. In general, the immune cell composition in individuals who cured the infection were comparable to the uninfected individuals, showing that filarial-driven changes of the immune responses require an active infection and are not maintained upon the clearance of the infection.

2.
Front Immunol ; 12: 777860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868049

RESUMEN

Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.


Asunto(s)
Traslado Adoptivo , Filariasis/inmunología , Filariasis/terapia , Filarioidea/inmunología , Subgrupos de Linfocitos T/inmunología , Traslado Adoptivo/métodos , Animales , Citocinas/biosíntesis , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Filariasis/parasitología , Interacciones Huésped-Patógeno/inmunología , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Ratones , Ratones Noqueados , Carga de Parásitos , Subgrupos de Linfocitos T/metabolismo
3.
Parasitol Res ; 117(8): 2665-2675, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29931394

RESUMEN

Lymphatic filariasis, onchocerciasis and loiasis are widespread neglected tropical diseases causing serious public health problems and impacting the socio-economic climate in endemic communities. More than 100 million people currently suffer from filarial infections but disease-related symptoms and infection-induced immune mechanisms are still ambiguous. Although most infected individuals have dominant Th2 and regulatory immune responses leading to a homeostatic regulated state, filarial-induced overt pathology like lymphedema, dermal pathologies or blindness can occur. Interestingly, besides dominant Th2 and regulatory T cell activation, increased Th17-induced immune responses were associated with filarial infection and overt helminth-induced pathology in humans. However, the immunological mechanisms of Th17 cells and the release of IL-17A during filarial infections remain unclear. To decipher the role of IL-17A during filarial infection, we naturally infected IL-17A-/- and wildtype C57BL/6 mice with the rodent filariae Litomosoides sigmodontis and analysed parasite development and immune alterations. Our study reveals that infected IL-17A-deficient C57BL/6 mice present reduced worm burden on days 7 and 28 p.i. but had longer adult worms on day 28 p.i. in the thoracic cavity (TC), the site of infection. In addition, infiltration of CD4+ T cells, CD4+Foxp3+ regulatory T and functional CD4+Rorγt+pStat3+ Th17 cells in the TC was reduced in IL-17A-deficient mice accompanied by reduced eotaxin-1 and CCL17 levels. Furthermore, mediastinal lymph node cells isolated from IL-17A-/- mice showed increased filarial-specific IFN-γ but not IL-4, IL-6, or IL-21 secretion. This study shows that Th17 signalling is important for host immune responses against filarial infection but appears to facilitate worm growth in those that reach the TC.


Asunto(s)
Filariasis/inmunología , Filarioidea/inmunología , Interferón gamma/inmunología , Interleucina-17/inmunología , Células Th17/inmunología , Animales , Femenino , Interleucina-17/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Immunobiology ; 223(4-5): 432-442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29246400

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells capable of abrogating T and B cells responses and have been identified in numerous cancers. As with other regulatory cell populations, they aim to maintain balance between host-defence-associated inflammation and ensuing tissue pathology. MDSC accumulation and/or activation involve several growth factors and cytokines including Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin (IL)-6 and suppression has been linked to receptors such as IL-4Rα. Other immune pathways, such as Toll-like receptors (TLRs) have also been shown to interfere in MDSC activity adding to the complexity in clarifying their pathways. Monocytic- (Mo-MDSCs) and polymorphonuclear- (PMN-MDSCs) cells are two subsets of MDSCs that have been well characterized and have been shown to function through different mechanisms although both appear to require nitric oxide. In human and murine model settings, MDSCs have been shown to have inhibitory effects on T cell responses during bacterial, parasitic and viral pathologies and an increase of MDSC numbers has been associated with pathological conditions. Interestingly, the environment impacts on MDSC activity and regulatory T cells (Tregs), mast cells and a few cells that may help MDSC in order to regulate immune responses. Since the majority of pioneering data on MDSCs has stemmed from research on malignancies, this review will summarize MDSC biology and function in cancer and highlight current knowledge about these cells during infectious pathologies as well.


Asunto(s)
Infecciones/inmunología , Monocitos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Citocinas/metabolismo , Humanos , Inmunidad Celular , Inmunomodulación
5.
Immunology ; 147(4): 429-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26714796

RESUMEN

BALB/c mice develop a patent state [release of microfilariae (Mf), the transmission life-stage, into the periphery] when exposed to the rodent filariae Litomosoides sigmodontis. Interestingly, only a portion of the infected mice become patent, which reflects the situation in human individuals infected with Wuchereria bancrofti. Since those individuals had differing filarial-specific profiles, this study compared differences in immune responses between Mf(+) and Mf(-) infected BALB/c mice. We demonstrate that cultures of total spleen or mediastinal lymph node cells from Mf(+) mice produce significantly more interleukin-5 (IL-5) to filarial antigens but equal levels of IL-10 when compared with Mf(-) mice. However, isolated CD4(+) T cells from Mf(+) mice produced significantly higher amounts of all measured cytokines, including IL-10, when compared with CD4(+) T-cell responses from Mf(-) mice. Since adaptive immune responses are influenced by triggering the innate immune system we further studied the immune profiles and parasitology in infected Toll-like receptor-2-deficient (TLR2(-/-)) and TLR4(-/-) BALB/c mice. Ninety-three per cent of L. sigmodontis-exposed TLR4(-/-) BALB/c mice became patent (Mf(+)) although worm numbers remained comparable to those in Mf(+) wild-type controls. Lack of TLR2 had no influence on patency outcome or worm burden but infected Mf(+) mice had significantly lower numbers of Foxp3(+) regulatory T cells and dampened peripheral immune responses. Interestingly, in vitro culturing of CD4(+) T cells from infected wild-type mice with granulocyte-macrophage colony-stimulating factor-derived TLR2(-/-) dendritic cells resulted in an overall diminished cytokine profile to filarial antigens. Hence, triggering TLR4 or TLR2 during chronic filarial infection has a significant impact on patency and efficient CD4(+) T-cell responses, respectively.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Filariasis/inmunología , Filarioidea/inmunología , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Filariasis/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...