Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815870

RESUMEN

Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Claudina-2/genética , Claudina-2/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/genética , Neoplasias Asociadas a Colitis/complicaciones , Neoplasias Asociadas a Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Survivin/metabolismo
2.
Commun Biol ; 6(1): 740, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460613

RESUMEN

Impaired autophagy promotes Inflammatory Bowel Disease (IBD). Claudin-2 is upregulated in IBD however its role in the pathobiology remains uncertain due to its complex regulation, including by autophagy. Irrespective, claudin-2 expression protects mice from DSS colitis. This study was undertaken to examine if an interplay between autophagy and claudin-2 protects from colitis and associated epithelial injury. Crypt culture and intestinal epithelial cells (IECs) are subjected to stress, including starvation or DSS, the chemical that induces colitis in-vivo. Autophagy flux, cell survival, co-immunoprecipitation, proximity ligation assay, and gene mutational studies are performed. These studies reveal that under colitis/stress conditions, claudin-2 undergoes polyubiquitination and P62/SQSTM1-assisted degradation through autophagy. Inhibiting autophagy-mediated claudin-2 degradation promotes cell death and thus suggest that claudin-2 degradation promotes autophagy flux to promote cell survival. Overall, these data inform for the previously undescribed role for claudin-2 in facilitating IECs survival under stress conditions, which can be harnessed for therapeutic advantages.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Claudina-2/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Mucosa Intestinal/metabolismo , Colitis/metabolismo , Autofagia/fisiología , Enfermedades Inflamatorias del Intestino/metabolismo
3.
Biotechniques ; 71(3): 456-464, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34392706

RESUMEN

The conventional orthotopic/xenograft models or genetically engineered murine models of colon cancer (CRC) are limited in their scope for a true understanding of tumor growth, progression and eventual metastasis in its natural microenvironment. In the currently used murine models of CRC metastasis, the metastasis occurs primarily in the liver, though lung metastasis accounts for a significant proportion of CRC metastasis. There is an urgent need for a murine model of CRC, which not only allows tumor progression in the colonic mucosa but also metastasis of the lung. The authors describe a minimally invasive murine model of colon cancer progression that may be ideal for a wide range of applications, including evaluating gene function, microenvironment, cancer metastasis and therapeutic translational research.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , Trasplante de Neoplasias , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Colonoscopía , Modelos Animales de Enfermedad , Neoplasias Pulmonares/secundario , Ratones , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...