Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(7): 975-988, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37414850

RESUMEN

Metabolic demands fluctuate rhythmically and rely on coordination between the circadian clock and nutrient-sensing signalling pathways, yet mechanisms of their interaction remain not fully understood. Surprisingly, we find that class 3 phosphatidylinositol-3-kinase (PI3K), known best for its essential role as a lipid kinase in endocytosis and lysosomal degradation by autophagy, has an overlooked nuclear function in gene transcription as a coactivator of the heterodimeric transcription factor and circadian driver Bmal1-Clock. Canonical pro-catabolic functions of class 3 PI3K in trafficking rely on the indispensable complex between the lipid kinase Vps34 and regulatory subunit Vps15. We demonstrate that although both subunits of class 3 PI3K interact with RNA polymerase II and co-localize with active transcription sites, exclusive loss of Vps15 in cells blunts the transcriptional activity of Bmal1-Clock. Thus, we establish non-redundancy between nuclear Vps34 and Vps15, reflected by the persistent nuclear pool of Vps15 in Vps34-depleted cells and the ability of Vps15 to coactivate Bmal1-Clock independently of its complex with Vps34. In physiology we find that Vps15 is required for metabolic rhythmicity in liver and, unexpectedly, it promotes pro-anabolic de novo purine nucleotide synthesis. We show that Vps15 activates the transcription of Ppat, a key enzyme for the production of inosine monophosphate, a central metabolic intermediate for purine synthesis. Finally, we demonstrate that in fasting, which represses clock transcriptional activity, Vps15 levels are decreased on the promoters of Bmal1 targets, Nr1d1 and Ppat. Our findings open avenues for establishing the complexity for nuclear class 3 PI3K signalling for temporal regulation of energy homeostasis.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Purinas , Lípidos
2.
Eur J Neurosci ; 53(6): 1783-1793, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33351992

RESUMEN

The circadian rhythms are endogenous rhythms of about 24 h, and are driven by the circadian clock. The clock centre locates in the suprachiasmatic nucleus. Light signals from the retina shift the circadian rhythm in the suprachiasmatic nucleus, but there is a robust part of the suprachiasmatic nucleus that causes jet lag after an abrupt shift of the environmental lighting condition. To examine the effect of attenuated circadian rhythm on the duration of jet lag, we established a transgenic rat expressing BMAL1 dominant negative form under control by mouse Prnp-based transcriptional regulation cassette [BMAL1 DN (+)]. The transgenic rats became active earlier than controls, just after light offset. Compared to control rats, BMAL1 DN (+) rats showed smaller circadian rhythm amplitudes in both behavioural and Per2 promoter driven luciferase activity rhythms. A light pulse during the night resulted in a larger phase shift of behavioural rhythm. Furthermore, at an abrupt shift of the light-dark cycle, BMAL1 DN (+) rat showed faster entrainment to the new light-dark cycle compared to controls. The circadian rhythm has been regarded as a limit cycle phenomenon, and our results support the hypothesis that modification of the amplitude of the circadian limit cycle leads to alteration in the length of the phase shift.


Asunto(s)
Relojes Circadianos , Síndrome Jet Lag , Factores de Transcripción ARNTL , Animales , Ritmo Circadiano , Ratones , Ratas , Ratas Transgénicas , Núcleo Supraquiasmático
3.
Sci Adv ; 5(1): eaau9060, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746467

RESUMEN

Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Proliferación Celular/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias Renales/metabolismo , Animales , Proteínas CLOCK/metabolismo , Carcinoma de Células Renales/patología , Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral , Cristalografía por Rayos X , Células HEK293 , Humanos , Neoplasias Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/efectos de los fármacos
4.
Sci Rep ; 9(1): 196, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655599

RESUMEN

The circadian clock generates behavioral rhythms to maximize an organism's physiological efficiency. Light induces the formation of these rhythms by synchronizing cellular clocks. In zebrafish, the circadian clock components Period2 (zPER2) and Cryptochrome1a (zCRY1a) are light-inducible, however their physiological functions are unclear. Here, we investigated the roles of zPER2 and zCRY1a in regulating locomotor activity and behavioral rhythms. zPer2/zCry1a double knockout (DKO) zebrafish displayed defects in total locomotor activity and in forming behavioral rhythms when briefly exposed to light for 3-h. Exposing DKO zebrafish to 12-h light improved behavioral rhythm formation, but not total activity. Our data suggest that the light-inducible circadian clock regulator zCRY2a supports rhythmicity in DKO animals exposed to 12-h light. Single cell imaging analysis revealed that zPER2, zCRY1a, and zCRY2a function in synchronizing cellular clocks. Furthermore, microarray analysis of DKO zebrafish showed aberrant expression of genes involved regulating cellular metabolism, including ATP production. Overall, our results suggest that zPER2, zCRY1a and zCRY2a help to synchronize cellular clocks in a light-dependent manner, thus contributing to behavioral rhythm formation in zebrafish. Further, zPER2 and zCRY1a regulate total physical activity, likely via regulating cellular energy metabolism. Therefore, these circadian clock components regulate the rhythmicity and amount of locomotor behavior.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas CLOCK/fisiología , Criptocromos/fisiología , Luz , Locomoción , Proteínas Circadianas Period/fisiología , Análisis de la Célula Individual , Proteínas de Pez Cebra/fisiología
5.
Commun Biol ; 1: 204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30480104

RESUMEN

The circadian clock allows physiological systems to adapt to their changing environment by synchronizing their timings in response to external stimuli. Previously, we reported clock-controlled adaptive responses to heat-shock and oxidative stress and showed how the circadian clock interacts with BMAL1 and HSF1. Here, we present a similar clock-controlled adaptation to UV damage. In response to UV irradiation, HSF1 and tumor suppressor p53 regulate the expression of the clock gene Per2 in a time-dependent manner. UV irradiation first activates the HSF1 pathway, which subsequently activates the p53 pathway. Importantly, BMAL1 regulates both HSF1 and p53 through the BMAL1-HSF1 interaction to synchronize the cellular clock. Based on these findings and transcriptome analysis, we propose that the circadian clock protects cells against the UV stress through sequential and hierarchical interactions between the circadian clock, the heat shock response, and a tumor suppressive mechanism.

6.
Neurochem Int ; 119: 11-16, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29305918

RESUMEN

Circadian clocks dictate various physiological functions by brain SCN (a central clock) -orchestrating the temporal harmony of peripheral clocks of tissues/organs in the whole body, with adaptability to environments by resetting their timings. Dysfunction of this circadian adaptation system (CAS) occasionally causes/exacerbates diseases. CAS is based on cell-autonomous molecular clocks, which oscillate via a core transcriptional/translational feedback loop with clock genes/proteins, e.g., BMAL1: CLOCK circadian transcription driver and CRY1/2 and PER1/2 suppressors, and is modulated by various regulatory loops including clock protein modifications. Among mutants with a single clock gene, BMAL1-deficient mice exhibit the most drastic loss of circadian functions. Here, we highlight on numerous circadian protein modifications of mammalian BMAL1, e.g., multiple phosphorylations, SUMOylation, ubiquitination, acetylation, O-GlcNAcylation and S-nitrosylation, which mutually interplay to control molecular clocks and coordinate physiological functions from the brain to peripheral tissues through the input and output of the clocks.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Proteínas Circadianas Period/metabolismo , Animales , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Humanos
7.
J Physiol Sci ; 66(4): 303-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26910317

RESUMEN

The circadian clock system confers daily anticipatory physiological processes with the ability to be reset by environmental cues. This "circadian adaptation system" (CAS), driven by cell-autonomous molecular clocks, orchestrates various rhythmic physiological processes in the entire body. Hence, the dysfunction of these clocks exacerbates various diseases, which may partially be due to the impairment of protective pathways. If this is the case, how does the CAS respond to cell injury stresses that are critical in maintaining health and life by evoking protective pathways? To address this question, here we review and discuss recent evidence revealing life-protective (pro-survival) molecular networks between clock (e.g., BMAL1, CLOCK, and PER2) and adaptation (e.g., HSF1, Nrf2, NF-κB, and p53) pathways, which are evoked by various cell injury stresses (e.g., heat, reactive oxygen species, and UV). The CK2 protein kinase-integrated interplay of the BMAL1 (clock) and HSF1 (heat-shock response) pathways is one of the crucial events in CAS.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Adaptación Fisiológica/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Choque Térmico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Estrés Oxidativo/fisiología
8.
PLoS Biol ; 13(11): e1002293, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562092

RESUMEN

Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2ß to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2ß binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Quinasa de la Caseína II/metabolismo , Relojes Circadianos , Criptocromos/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Animales , Quinasa de la Caseína II/química , Quinasa de la Caseína II/genética , Línea Celular , Células Cultivadas , Criptocromos/química , Criptocromos/genética , Embrión de Mamíferos/citología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
PLoS One ; 8(12): e82006, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312621

RESUMEN

Dysfunction of circadian clocks exacerbates various diseases, in part likely due to impaired stress resistance. It is unclear how circadian clock system responds toward critical stresses, to evoke life-protective adaptation. We identified a reactive oxygen species (ROS), H2O2 -responsive circadian pathway in mammals. Near-lethal doses of ROS-induced critical oxidative stress (cOS) at the branch point of life and death resets circadian clocks, synergistically evoking protective responses for cell survival. The cOS-triggered clock resetting and pro-survival responses are mediated by transcription factor, central clock-regulatory BMAL1 and heat shock stress-responsive (HSR) HSF1. Casein kinase II (CK2) -mediated phosphorylation regulates dimerization and function of BMAL1 and HSF1 to control the cOS-evoked responses. The core cOS-responsive transcriptome includes CK2-regulated crosstalk between the circadian, HSR, NF-kappa-B-mediated anti-apoptotic, and Nrf2-mediated anti-oxidant pathways. This novel circadian-adaptive signaling system likely plays fundamental protective roles in various ROS-inducible disorders, diseases, and death.


Asunto(s)
Relojes Circadianos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Supervivencia Celular , Respuesta al Choque Térmico , Ratones , Células 3T3 NIH , Transducción de Señal , Transcriptoma
10.
PLoS One ; 6(9): e24521, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21915348

RESUMEN

Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Proteínas Circadianas Period/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Western Blotting , Proteínas CLOCK/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Ratones , Células 3T3 NIH , Proteínas Circadianas Period/genética , Unión Proteica , Temperatura , Factores de Transcripción/genética
11.
Biol Pharm Bull ; 32(7): 1183-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19571382

RESUMEN

In the vertebrate circadian feedback loop, CLOCK:BMAL heterodimers induce the expression of Cry genes. The CRY proteins in turn inhibit CLOCK:BMAL-mediated transcription closing the negative feedback loop. Four CRYs, which all inhibit CLOCK:BMAL-mediated transcription, exist in zebrafish. Although these zebrafish Crys (zCry1a, 1b, 2a, and 2b) show a circadian pattern of expression, previous studies have indicated that the circadian oscillation of zCry1a could be CLOCK:BMAL-independent. Here we show that abrogation of CLOCK:BMAL-dependent transcription in zebrafish cells by the dominant negative zCLOCK3-DeltaC does not affect the circadian oscillation of zCry1a. Moreover, we provide several lines of evidence indicating that the extracellular signal-regulated kinase (ERK) signaling cascade modulates the circadian expression of zCry1a gene in constant darkness. Taken together, our data strongly support the notion that circadian oscillation of zCry1a is CLOCK:BMAL-independent and further indicate that mechanisms involving non-canonical clock genes could contribute to the circadian expression of zCry1a gene in a cell autonomous manner.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano/genética , Transactivadores/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Proteínas CLOCK , Células Cultivadas , Ritmo Circadiano/fisiología , Luz , Multimerización de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/genética , Transcripción Genética , Pez Cebra/fisiología
12.
Nat Struct Mol Biol ; 16(4): 446-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19330005

RESUMEN

Clock proteins govern circadian physiology and their function is regulated by various mechanisms. Here we demonstrate that Casein kinase (CK)-2alpha phosphorylates the core circadian regulator BMAL1. Gene silencing of CK2alpha or mutation of the highly conserved CK2-phosphorylation site in BMAL1, Ser90, result in impaired nuclear BMAL1 accumulation and disruption of clock function. Notably, phosphorylation at Ser90 follows a rhythmic pattern. These findings reveal that CK2 is an essential regulator of the mammalian circadian system.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos , Quinasa de la Caseína II/metabolismo , Factores de Transcripción ARNTL , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Quinasa de la Caseína II/genética , Núcleo Celular/química , Silenciador del Gen , Mutagénesis Sitio-Dirigida , Fosforilación
13.
Nature ; 450(7172): 1086-90, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18075593

RESUMEN

Regulation of circadian physiology relies on the interplay of interconnected transcriptional-translational feedback loops. The CLOCK-BMAL1 complex activates clock-controlled genes, including cryptochromes (Crys), the products of which act as repressors by interacting directly with CLOCK-BMAL1. We have demonstrated that CLOCK possesses intrinsic histone acetyltransferase activity and that this enzymatic function contributes to chromatin-remodelling events implicated in circadian control of gene expression. Here we show that CLOCK also acetylates a non-histone substrate: its own partner, BMAL1, is specifically acetylated on a unique, highly conserved Lys 537 residue. BMAL1 undergoes rhythmic acetylation in mouse liver, with a timing that parallels the downregulation of circadian transcription of clock-controlled genes. BMAL1 acetylation facilitates recruitment of CRY1 to CLOCK-BMAL1, thereby promoting transcriptional repression. Importantly, ectopic expression of a K537R-mutated BMAL1 is not able to rescue circadian rhythmicity in a cellular model of peripheral clock. These findings reveal that the enzymatic interplay between two clock core components is crucial for the circadian machinery.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano/fisiología , Transactivadores/metabolismo , Factores de Transcripción ARNTL , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas CLOCK , Criptocromos , Flavoproteínas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Ratones , Especificidad por Sustrato
14.
Science ; 309(5739): 1390-4, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16109848

RESUMEN

The molecular machinery that governs circadian rhythmicity is based on clock proteins organized in regulatory feedback loops. Although posttranslational modification of clock proteins is likely to finely control their circadian functions, only limited information is available to date. Here, we show that BMAL1, an essential transcription factor component of the clock mechanism, is SUMOylated on a highly conserved lysine residue (Lys259) in vivo. BMAL1 shows a circadian pattern of SUMOylation that parallels its activation in the mouse liver. SUMOylation of BMAL1 requires and is induced by CLOCK, the heterodimerization partner of BMAL1. Ectopic expression of a SUMO-deficient BMAL1 demonstrates that SUMOylation plays an important role in BMAL1 circadian expression and clock rhythmicity. This reveals an additional level of regulation within the core mechanism of the circadian clock.


Asunto(s)
Ritmo Circadiano , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas CLOCK , Células COS , Proteínas de Ciclo Celular , Línea Celular , Dimerización , Etilmaleimida/farmacología , Regulación de la Expresión Génica , Hígado/metabolismo , Lisina/metabolismo , Ratones , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
15.
Neurosci Lett ; 341(2): 111-4, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12686378

RESUMEN

Heterogeneous ribonuclear protein U (hnRNP U/SAF-A) is a nuclear multi-potent regulatory protein. We investigated whether hnRNP U protein and transcript levels undergo circadian changes by immunoblot and quantitative RT-PCR analyses. In the suprachiasmatic nucleus (SCN), hnRNP U immunoreactivity (ir) changed in a robust circadian pattern as it showed a peak at late nighttime in both light/dark and constant dark conditions. hnRNP U transcript levels in the SCN changed in a similar circadian pattern. In the hippocampus, hnRNP transcript levels also showed a peak at late nighttime but hnRNP U-ir showed an opposite pattern as it peaked at late daytime. These findings suggest that hnRNP U participates in nuclear regulatory events that are involved in mammalian central and peripheral circadian clocks.


Asunto(s)
Ritmo Circadiano/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Western Blotting , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
16.
Genes Cells ; 8(12): 973-83, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14750952

RESUMEN

BACKGROUND: Recent discoveries of clock proteins have unveiled an important part of the mammalian circadian clock mechanism. However, the molecular clockwork that cause these fundamental feedback loops to stably oscillate with a approximately 24 h-periodicity remain unclear. RESULTS: Serum-shocked fibroblasts were used as a cellular clock model. Circadian changes in the subcellular localization and phosphorylation of BMAL1 protein in these cells were assessed by immunocytochemistry and immunoblotting. A significant time lag between Bmal1 transcription and the cytoplasmic/nuclear accumulation of BMAL1 was observed. After its nuclear accumulation, BMAL1 accumulated in the cytoplasm again, mainly by nucleoexport, before the increase of Bmal1 transcripts. Nuclear accumulation of BMAL1 matched nuclear accumulation of CLOCK and the peak of Per1 transcription. Nuclear BMAL1 was gradually phosphorylated and then dephosphorylated in a temporally regulated manner, although cytoplasmic BMAL1 was not. In serum-shocked mCry1/mCry2 (CRY)-deficient fibroblasts, which lack a functional clock, both the cytoplasmic and nuclear BMAL1 were only present as hyperphosphorylated forms and their circadian nucleocytoplasmic shuttling was absent. CONCLUSIONS: We propose that the nucleocytoplasmic shuttling and phosphorylation states of BMAL1 are regulated by circadian clock, and that this temporally regulated and time-delayed nuclear entry of BMAL1 is important in the maintenance of a stably oscillating clock.


Asunto(s)
Núcleo Celular/metabolismo , Ritmo Circadiano , Factores de Transcripción/metabolismo , Factores de Transcripción ARNTL , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Núcleo Celular/química , Citoplasma/química , Citoplasma/metabolismo , Ácidos Grasos Insaturados/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Noqueados , Células 3T3 NIH , Fosforilación , ARN Mensajero/biosíntesis , Factores de Transcripción/análisis , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...